The possible cancer risk factor of *Helicobacter pylori* infections in immunocompromised children

Amer Naes Amer 1, Janan G. Hassan 1, Ihsan E. Al-Saimary 2

Received: 10 September 2017 / Accepted: 10 October 2017

Abstract: The frequency of *Helicobacter pylori* in children with malignancy was evaluate in the present study. Among 51 children included in the study ,29 of them are in malignancy group (79.3% of them having positive one step diagnostic test) ,while 22 children were control group (54.5% of them having positive one step diagnostic test). *H.pylori* infection was significantly higher in the malignancy group compared to the control group(P<0.05); 44.8% having positive culture for *H.pylori* ,while only 18.2% of control having positive culture for *H.pylori*. the results showed that there is no significant association between *H.pylori* and the type of cancer with P>0.05. And there is a significant association between *H.pylori* and age more than 5 years with P<0.05 which is statistically significant among patient groups. results also showed that there is no significant association between *H.pylori* and sex among both patients and control groups with P>0.05.

Keywords: H.pylori, malignancy, children.

Corresponding author: should be addressed (Email: ihsanalsaimary@gmail.com)

Introduction:

Helicobacter pylori has classified as a carcinogenic pathogen¹. Its prevalence is high in developing countries. A part from the gastrointestinal pathological changes caused by this organism, reports on the association between *H. pylori* infection and extra gastro-intestinal diseases have been increasing². Although impaired host immunity should be associated with a high prevalence of this infection, a definitive relationship has not been established. Helicobacter pylori infection seems to be associated with an increased risk of developing gastric cancer. However, only a small number

of infected individuals will develop gastric cancer^{3,4,5,6}, including mucosaassociated lymphoid tissue lymphoma and adenocarcinoma. The infection is contracted primarily in childhood and infection from childhood appears to enhance the risk for carcinogenesis⁷.In 1994 Helicobacter pylori was classified as a group 1 carcinogen for gastric cancer by the International Agency for Research on Cancer¹. The colonization determine with Н. pylori development of gastric atrophy, also called multifocal atrophic gastritis. This involves loss of gastric mucosal glands and hence altered gastric secretion. The evolution of gastric atrophy may be the first step towards the development of

¹ Department of pediatrics- College of Medicine- University of Basrah.

² Department of Microbiology – College of Medicine- University of Basrah.

gastric cancer. This lesion might then lead to further changes, among them intestinal metaplasia and dysplasia, conditions that typically precede cancer ^{3,6,8}.Cancer affecting the mucosaassociated lymphoid tissue (MALT) in stomach, gastric or MALT lymphoma, is a rare type of non-Hodgkin lymphoma characterized by B lymphocytes, a type of immune cell, that slowly multiply in the stomach lining⁹. The lining of the stomach normally lacks lymphoid (immune system) tissue, but this tissue nearly appears in response colonization of the lining by H. pylori bacteria. MALT lymphomas account for approximately four percent of all cases of lymphoma ¹⁰. Nearly all patients with gastric MALT lymphoma are infected with H. pylori, and the risk of developing this tumor is over six times higher in infected people than in uninfected people¹¹. Furthermore, up to 80 percent of patients with gastric MALT lymphoma achieve complete remission of their tumors after treatment with H. pylori-eradicating antibiotic therapy 12 . To colonize the stomach H. pylori must survive the acidic pH of the lumen and burrow into the mucus to reach its niche, close to the stomach's epithelial cell layer. The bacterium has flagella and moves through the stomach lumen and drills into the mucoid lining of the stomach ¹³. Many bacteria can be found deep in the mucus, which is continuously secreted by mucous cells and removed on the luminal side. To avoid being carried into the lumen, H. pylori senses the pH gradient within the mucus layer by chemotaxis and swims away from the acidic contents of the lumen towards the more neutral pH environment of the epithelial cell surface ^{5,14}. *H. pylori* is also found on

the inner surface of the stomach epithelial cells and occasionally inside epithelial cells ¹⁵.It produces adhesins which bind to membrane-associated lipids and carbohydrates and help it adhere to epithelial cells. H. pylori produces large amounts of the enzyme urease, molecules of which are localized inside and outside of the bacterium¹⁶. Urease breaks down urea (which is normally secreted into the stomach) to carbon dioxide and ammonia (ammonia is converted into the ammonium ion by taking hydrogen from water upon its breakdown into hydrogen and hydroxyl ions, Hydroxyl ions then react with carbon dioxide, producing bicarbonate which neutralizes gastric acid) ^{11,17}. The survival of *H. pylori* in the acidic stomach is dependent on urease, and it would eventually die without the enzyme ^{18,19}. The ammonia that is produced is toxic to the epithelial cells, and, along with the other products of H. pylori—including protease, vacuolating cytotoxin A (VacA), and certain phospholipases—damages those cells 4,20,21

The present study aimed to find the relationship between occurrence of *H.pylori* and children cancer by study the biopsy cultures of H.pylori from immunocompromised children

Materials and Method:

patients group:

A prospective comparative casecontrol study was carried out between March to September 2009, the study included 29 children (20 male and 9 female) with different types of malignancies who were admitted to pediatric oncology unit for treatment at Basrah Maternity and Children Hospital were included in the study, and their age ranged between 18 month to 11 years, and regarded as patient group. Demographical and clinical data were prospectively recorded for all studied population as follows:

- Type of cancer (ALL, AML, solid tumor), risk group of patients with leukemia.
- Clinical features including symptoms and signs: epigastric pain ,dyspepsia, abdominal pain and Vomiting.
- History of peptic ulcer or endoscopy or recurrent abdominal pain. -consanguinity.

Control group:

A total of 22 children (12 male and 10 female) –with similar gender and age - were matched as control group.

Laboratory Data:

Investigations were done in form of gastric aspirate culture for *H.pylori* and one step diagnostic test (which detect the antigenin patient sera for *H.pylori*).

H.pylori gastric aspirate culture:

Gastric aspirate culture was taken from all patients who are included in the study (by using nasogastric tube) and special culture media which is called (Columbia agar), Three antibiotics (vancomycine, trimethoprim, polymyxin-B) had been used to inhibit all Gram positive and negative bacteria, the cultivation was done for five days and then examined to detect *H.pylori*.

One step diagnostic test for immunological study:

One milliliter of serum was taken from all patients for the one step diagnostic test. One step diagnostic (designed by human company, Belgium)detect the antibodies H.pylori with 95.9% sensitivity and 89.6% specificity, but it can be positive in other campylobacters. The limitations of this test attributed to that the test is qualitative rather quantitative and does not indicate the titer of the antibody in the specimen.

Statistical Analysis:

Statistical analysis was done using SPSS (standard program for social sciences) program ver .17 ,data where expressed and comparison of proportions was performed using chi-square test .P value of less than 0.05 was considered as statistically significant , P value of less than 0.01 as highly significant and P value of less than 0.001 as extremely significant .

Results:

51.7% of patient were >5 years in comparison to 54.5% of control were >5 years so there was no significant difference regarding age group between patient and control.

29 children were patient group the majority of them were male with male: female ratio equal to 2.2 ,while 22 children were control group with male: female ratio equal to 1.2 ,with a p value >0.05,so there was no significant difference between the two groups regarding sex. Table(1).

Table (1): Distribution of patients and control according to age and gender.

Age / gender		Patient group		Control group		P value		
		No.	%					
Age	>5years	15	51.7%	12	54.5%	>0.05		
	<5years	14	48.3%	10	45.5%			
Total		29	100%	22	100%			
Sex	Male	20	69%	12	54.5%	>0.05		
	Female	9	31%	10	45.5%			
Total		29	100%	22	100%			

Among 51 children included in the study ,29 children were patients (of them 79.3% having positive one step diagnostic test) ,while 22 children were control (of them 54.5 having positive one

step diagnostic test). There is statistically significant higher percentage of patient group having *H.pylori* comparing to control group with a p value < 0.05. Table(2).

Table (2): One step diagnostic test for *H.pylori* among patient and control.

One step diagnostic test	patient	control	Total	P value				
H.pylori + ve	23	12	35	< 0.05				
	79.3%	54.5%	68.6%					
H.pylori – ve	6	12	16					
	20.7%	54.5%	31.4%					
Total	29	22	51					
	100%	100%	100%					

Out of 29 patients; 44.8% having positive culture for *H.pylori*, while only 18.2% of control having positive culture for *H.pylori*. There is statistically

significant higher percentage of patient group having H.pylori comparing to control group with a p value < 0.05. Table (3).

Table (3): *H.pylori* culture of the gastric aspirate among patient and control.

Gastric aspirate culture	patient	control	Total	OR	P value
H.pylori + ve	13	4	17	0.274	< 0.05
	44.8%	18.2%	33.3%		
H.pylori – ve	16	18	34		
	55.2%	81.8%	66.7%		
Total	29	22	51		
	100%	100%	100%		

The table (4) showing that there is no significant association between

H.pylori and the type of cancer with a p value > 0.05.

Table (4): Relation btween *H.pylori* gastric aspirate culture to types of malignancy.

	Acute lymphocytic	Solid tumor	total	P value	
	leukemia				
H.pylori + ve	10	3	13		
	76.9%	31.8%	100%	>0.05	
H.pylori - ve	13	3	16		
	81.3%	18.7%	100% 16		

The table (5) showing a highly significant association of *H.pylori* with

symptom p < 0.01.

Table (5): Symptoms and *H.pylori* among patient group.

	symptomatic	Asymptomatic	Total	P value
H.pylori +ve	9	4	13	< 0.01
	69.2%	30.8%	100%	
H.pylori -ve	2	14	16	
	12.5%	87.5%	100%	

The table (6) showed that there is a significant association between H.pylori and age more than 5 years with a p value more than 0.05 which is statistically significant among patient group. This

table also showed that there is no significant association between H. pylori and sex among both patient and control groups with a p value less than 0.05 which is statistically not significant.

Table (6): Distribution of patient of both age and sex groups according to *H.pylori* gastric aspirate culture.

	Results of age		e	total P	sex		total	P	
	Gasrtric aspirate	<5years	>5year		value	male	female		value
	Gasrtric	3	10	13	< 0.05	8	5	13	>0.05
	aspirate +ve	23.1 %	76.9 %	100 %		61.5%	38.5%	100%	
Patient	Gasrtric	12	4	16		12	4	16	
	aspirate – ve	75 %	25 %	100 %		75%	25%	100%	
	Gasrtric	0	4	4	< 0.05	3	1	4	>0.05
control	aspirate +ve	0%	100%	100%		75%	25%	100%	
	Gasrtric	10	8	18		9	9	18	
	aspirate – ve	55.6%	44.4%	100%		100%	100%	100%	

Discussion:

Helicobacter pylori represents one of common and medically most prominent infection worldwide many researches done regarding H.pylori but only small number of researches done about the relation of H.pylori and including childhood cancer lymphocytic leukemia and solid tumor²². This study reported that there was about of patients with cancer had 44.8% positive culture for *H.pylori* while 18.2% of control group. And these results was statistically significant (P < 0.05), similar results was observed by Nutpho P, Ukarapol N. et al in Thailand which also reported that there was statistically significant association between H.pylori

and the type of cancer(specially acute lymphocytic leukemia)in contrast to our study which revealed no significant association between type of cancer and H.pylori ²³ . This study showed that patients with positive culture for H.pylori had high antibodies for H.pylori, the same results was in the control group of our study this may be due to cross association between *H.pylori* and other campylobacters ,no study was done including the same results. Regarding the symptoms most of patients with *H.pylori* were symptomatic similar study were done by Luigi satacroce in Italy that reported 65% of patients with H.pylori were symptomatic while only 35% of them were asymptomatic ²⁴. About the age group and sex the study reported that there was a significant association between H.pylori among patient group more than 5 years Similar result was also reported in a study done in Australia by W. HARDIKAR et al ²⁵.but there was association significant between H.pylori and sex of patients, this was similar to other study done by Mahmoud A Mohammad et al in Egypt ²⁶ . In contrast with other study done by Mehmet Kanbay et al in Turkey ²⁷which reported significant association between H.pylori and female gender. While in other study done by Marilyn L. et al in California which reported a significant association between H.pylori and male gender ²⁸. Once H. pylori colonize the stomach of an individual, it probably remains present for many years. However, many colonized people remain asymptomatic suggesting that the host factors are important for progression to H. pylori – mediated diseases ²⁹. Serology with IgG (as a non - invasive test to detect H. pylori infection) is widely used in Europe. Unfortunately, serology does not provide any data as to whether there is an active or past infection³⁰. In this study, the Seroprevalence of anti-H. pylori antibodies was significantly higher in immunocompromised children than that in control subjects. Similar results were obtained by other studies in immunocompromised children, chronic diarrhea, malnutrition, acute and chronic leukemia 31,32,33,34,35. The study reported a significant relation of H.pylori and children cancerwith 16.6% amongchildren with cancer and only 3.3% among those without cancer.

References:

 Yamaoka, Yoshio. (2008). Helicobacter pylori: Molecular Genetics and Cellular Biology. Caister Academic Pr. 160:85-89.

- 2. Thevenot, T.; Josenhans, C. and Brown, L.M. (2000). Helicobacter pylori: epidemiology and routes of transmission. *Epidemiol Rev.* 22 (2): 283–297.
- 3. Olson, J.W. and Maier, R.J. (2002). Molecular hydrogen as an energy source for *Helicobacter pylori*. *Science*. 298 (5599): 1788–1790.
- 4. Stark, R.M.; Gerwig, G.J.; Pitman, R.S. *et al.* (1999). "Biofilm formation by *Helicobacter pylori*" February. *Lett Appl Microbiol.* 28 (2): 121–126.
- Chan, W.Y.; Hui, P.K.; Leung, K.M.; Chow, J.; Kwok, F. and Ng, C.S. (1994). Coccoid forms of *Helicobacter pylori* in the human stomach. *Am J Clin Pathol*. 102 (4): 503–507.
- Liu, Z.F.; Chen, C.Y.; Tang, W.; Zhang, J.Y.; Gong, Y.Q. and Jia, J.H. (2006). Gene-expression profiles in gastric epithelial cells stimulated with spiral and coccoid *Helicobacter pylori*. *J. Med. Microbiol*. 55: 1009–1015.
- Kusters, J.G.; van Vliet, A.H. and Kuipers, E.J. (2006). Pathogenesis of *Helicobacter* pylori infection. Clin Microbiol Rev. 19 (3): 449–490.
- 8. Josenhans, C.; Eaton, K.A.; Thevenot, T. and Suerbaum, S. (2000). Switching of flagellar motility in *Helicobacter pylori* by reversible length variation of a short homopolymeric sequence repeat in fliP, a gene encoding a basal body protein. *Infect Immun*. 68 (8): 4598–4603.
- 9. Rust, M.; Schweinitzer, T. and Josenhans, C. (2008). *Helicobacter* Flagella, Motility and Chemotaxis. in Yamaoka Y. *Helicobacter pylori: Molecular Genetics* and *Cellular Biology*, 34(4):433-441.
- 10. Baldwin, D.N. Shepherd B, Kraemer P, et al. (2007).Identification of Helicobacter pylori genes that contribute to stomach colonization. Infect Immun. 75 (2): 1005–1016.
- 11. Broutet, N.; Marais, A. and Lamouliatte, H, et al. (2001). cagA Status and eradication treatment outcome of anti-Helicobacter pylori triple therapies in patients with non-ulcer dyspepsia. J Clin Microbiol. 39 (4): 1319–1322.
- Ottemann, K.M. and Lowenthal, A.C. (2002). Helicobacter pylori uses motility for initial colonization and to attain robust infection. Infect. Immun. 70 (4): 1984–1990.

- 13. Schreiber, S.; Konradt, M.; Groll, C. *et al.* (2004). The spatial orientation of *Helicobacter pylori* in the gastric mucus. Proc. *Natl. Acad. Sci. U.S.A.* 101 (14): 5024–5029.
- Petersen, A.M. and Krogfelt, K.A. (2003).
 Helicobacter pylori: an invading microorganism? A review. FEMS Immunol. Med. Microbiol. 36 (3): 117–126.
- 15. Smoot, D.T. (1997). How does Helicobacter pylori cause mucosal damage? Direct mechanisms. Gastroenterology. 113 (6): S31–S34.
- Shiotani, A. and Graham, D.Y. (2002).
 Pathogenesis and therapy of gastric and duodenal ulcer disease". *Med. Clin. North Am.* (6): 1447–1466.
- Dixon, M.F. (2000). Patterns of inflammation linked to ulcer disease.
 Baillieres Best Pract Res Clin Gastroenterol. 14 (1): 27–40.
- 18. Blaser, M.J. and Atherton, J.C. (2004). *Helicobacter pylori* persistence: biology and disease. *J. Clin. Invest.* 113 (3): 321–333.
- 19. Schubert, M.L. and Peura, D.A. (2008). Control of gastric acid secretion in health and disease. *Gastroenterology*. 134 (7): 1842–1860.
- Suerbaum, S. and Michetti, P. (2002). Helicobacter pylori infection. N. Engl. J. Med. 347 (15): 1175–1186.
- 21. Salih, B.A. (2009). *Helicobacter pylori* infection in developing countries: The burden for how long? *Saudi J Gastroenterol*. 15: 201-207.
- 22. Kabir, S. (2007). The current status of *Helicobacter pylori* vaccines: a review". *Helicobacter*. 12 (2): 89–102.
- 23. Prakaimuk, N. and Nuthapong, U. (2006). *Helicobacter pylori* and Immunocompromised Children. emergency. *Infectious disease journal*. 12: 12-14.
- Hardikar, W.; Davidson, P.M.; Cameron, D. J. S.; Gilbert, G.L. and Campell, P.E. (2008). Helicobacter pylori infection in children. Journal of gastroenterology and hepatology.5:450-454.
- 25. Mahmout, A.M.; Laila, H.; Andy, C. and Sarah, J.J. (2006). Prevalence of *Helicobacter Pylori* infection among Egyptian children: impact of social background and effect on growth. Public *Health nutrition*. 11(3): 230-236.

- 26. Spee, L.A.; Madderom, M.B.; Pijpers, M.; van Leeuwen, Y. and Berger, M.Y. (2010). Association between *Helicobacter pylori* and gastrointestinal symptoms in children. *Pediatrics*, 125 (3): 651-669.
- 27. Kanbay, M.; Gür, G.; Arslan, H.; Yilmaz, U. and Boyacioğlu, S. (2005). The Relationship of ABO Blood Group, Age, Gender, Smoking, and Helicobacter pylori Infection. Digestive diseases and sciences J. 5: 1214-1217.
- 28. Marilyn, L.R.; Sally, L.G.; Robert, A.H. and Julie, P. (1995). Biologic Sex as a Risk Factor for *Helicobacter pylori* Infection in Healthy Young Adults. *American journal of epidemiology*. 856-863.
- Sullivan, P.B.; Thomas, J.E. and Wight, D.G. (1990). Helicobacter pylori in Gambian children with chronic diarrhea and malnutrition. Arch Dis Child. 65 (2): 189-191.
- 30. Mastsukawa, Y.; Itoh, T.; Nishinarita, S.; Ohshima, T. and Horie, T. (1999). Low seroprevalence of *Helicobacter pylori* in patients with leukemia. *Letters and Co*. 253.
- 31. Sayed, A.S.M.; Abd Al-Azeem, M.W.; Noaman, H.A. and Hassan M.A. (2007). Seroepidemiological study on *Helicobacter pylori* infection in children and adults in Assiut Governorate, Upper Egypt. *JASMR*. 2 (2): 129-133.
- 32. Mansour-Ghanaei, F.; Mashhour, M.Y.; Joukar, F.; Sedigh, M.; Bagher-Zadeh, A.H. and Jafarshad, R. (2009). Prevalence of *Helicobacter Pylori* Infection among children in Rasht, *Northern Iran. Middle East Digest Dis.* 1 (2): 84-88.
- 33. Nguyen, B.V.; Nguyen, K.G. and Phung, C.D. (2006). Prevalence of and factors associated with *Helicobacter pylori* infection in children in the north of Vietnam. *Am J Trop Medical Hyg.* 74: 536-539.
- 34. Michaels, M.G. and Green, M. (2010). Infections in pediatric transplant recipients: not just small adults. *Infect Dis Clin North Am.* 24(2): 307-318.
- 35. Papadaki, H.A.; Pontikoglou, C.; Stavroulaki, E.; *et al* (2005). High prevalence of *Helicobacter pylori* infection and monoclonal gammopathy of undetermined significance in patients with chronic idiopathic neutropenia. *Ann. Hematol.* 84 (5): 317-320.