

Evaluating *VDR* Gene Expression and Vitamin D3 Levels in Calcium Oxalate Kidney Stone Patients: A Comparative Study with Healthy Controls

¹Huda B. Babat, ²Luma Hassan Alwan Alobaidy, ³Issam Salman Al-Azzawi

^{1,2} Department of Biology, College of Science for Women, University of Baghdad
³Urology Department, Department of Surgery, College of Medicine, Mustansiriyah University

Received: February 20, 2025 / Accepted: June 22, 2025 / Published: November 16, 2025

Abstract: Kidney stones, also known as urolithiasis, is a urological condition with a high prevalence and recurrence rate, significantly impacting both individual health and the healthcare system. The progress in preventing their recurrence remains limited. Calcium oxalate (CaOx) stones are the most common type of kidney stone, accounting for over 70% of all cases. Vitamin D receptor (VDR) and vitamin D (VD) are associated with kidney stones in a multidimensional complex relation involving numerous physiological and metabolic pathways. In this study aims to evaluate and compare VDR gene expression and VD3 serum levels in kidney stone patients with healthy controls and investigate the relationships that may interfere with kidney stone formation and recurrence. The central research hypothesis is that an alteration in VDR and VD values in patients with kidney stones affects calcium homeostasis, which plays a role in kidney stone formation. To accomplish this objective, the RT-qPCR method was employed to assess VDR gene expression and serum levels of vitamin D (VD) and calcium in patients with kidney stones. These measurements were then compared with those of healthy individuals. The key findings of the research revealed that VD deficiency was detected in 56% of patients and 7.5% in controls groups, significant differences in vitamin D levels, which were (20.66±7.07) and (33.90±10.40), and VDR gene expression, which were (37.61 ± 32.19) and (10.39 ± 5.07) between patients and healthy controls groups, respectively; suggesting a potential link with Kidney Stone formation, and a good target for treatment developing strategies aiming to maintain healthy calcium metabolism and reduce kidney stone formation risk.

Keywords: CaOx Kidney Stone, Vitamin D, Vitamin D Receptor, Calcium, Gene Expression.

Corresponding author: (Email: huda.bahaa2202m@csw.uobaghdad.edu.iq)

Introduction

Kidney stones (nephrolithiasis) is a multifactorial disease; it is a common and often excruciating medical condition with a rising prevalence that affects approximately 13% of men and 7% of women worldwide (1-3). Kidney stones are solid crystalline formations that develop within the urinary tract, primarily in the kidneys. It is often a recurrent urological condition with a recurrence rate ranging from 6.1% to 66.9% that significantly burdens

individual health and the healthcare system (4-6). Despite the significant improvement in the surgical treatment of renal kidney stones, the progress in preventing renal calculi recurrence is limited (7). High recurrence rate of kidney stones lead to recurrent urinary tract infection, urinary tract obstruction, increased risks of renal function reduction, chronic renal injury, and even renal failure, which have a severe impact on the patients' health (2,8). Calcium-containing stones are the most

common type; more than 70% of all kidney stones are Calcium oxalate (CaOx) (9,10). Multiple factors influence kidney stones development and formation, such as dietary habits, metabolic imbalances, genetic predisposition, and underlying medical conditions (11,12).

Vitamin D3 (VD3) (Cholecalciferol) is a fat-soluble vitamin that plays a crucial role in various physiological processes within the human body; it has been shown to influence calcium and phosphorus metabolism, bone health, and regulating immune function (13-16). VD3 affects kidney stone formation indirectly by increasing the efficiency of intestinal calcium absorption and regulating calcium renal excretion, also it is pivotal in oxalate metabolism (17,18).

VD3 deficiency is detected when the serum concentration levels of VD3 is than 20 ng/mL (19). deficiency may elevate the risk of kidney stone formation by inducing secondary hyperparathyroidism as a compensatory physiological response by the body to maintain calcium blood levels homeostasis. To achieve this, PTH secretion is increased, promoting calcium release from bone into the bloodstream and inhibiting reabsorption, leading increased to calcium urinary excretion hypercalciuria (18.20). Furthermore, it may induce oxidative and stress overexpression of inflammatory mediators in renal tissue (21).

Vitamin D receptor (VDR) (encoded by the VDR gene, located on chromosome 12) is a nuclear receptor and transcription factor found in almost all cells (22,23). Playing an essential role in the regulation of various physiological processes, VDR is the primary mediator of vitamin D's biological effects (24). Acting as a

ligand-activated transcription factor, VDR binds to vitamin D and establishes a heterodimer with the retinoid x receptor (RXR), which ultimately regulates the expression of target genes involved in a diverse array of cellular processes (25,26).

Materials and methods Study design and samples collection

This study was designed as a casecontrol study. It included two groups of samples: 50 patients diagnosed and confirmed with (CaOX) kidney stones healthy controls and 40 (Only individuals with no history of kidney stones, a clean renal ultrasound, a clean urine analysis, and evaluation by a urologist to confirm the absence of kidney stones and any urological issues were included as controls.). All the samples did not have diabetes. Under sterile conditions, whole blood samples (5 mL) were collected in EDTA tubes. Kidney stone samples were primarily collected from patients undergoing urological procedures at the hospital. Most stones were obtained during interventions surgical such Percutaneous Nephrolithotomy (PCNL) Ureteroscopy (URS), additional samples were collected from patients who underwent Extracorporeal Shock Wave Lithotripsy (ESWL). The samples were collected from Al Yarmouk Teaching Hospital and Ghazi Hospital Al-Hariri for Surgical Specialties in Baghdad from October 2023 to September 2024. The study was approved by the Iraqi Ministry of Health's ethics committee. and participants signed the ethical approval.

Biochemical analysis and stone analysis

Serum calcium, urea, and creatinine levels (mg/dL) were measured using an automated biochemical analyzer (AU5800, Beckman Coulter Inc, Japan), Vitamin D3 serum levels (ng/mL) were

measured using a fully automated system (Access 2, Beckman Coulter Inc, Germany), and the assays were performed according to manufacturer's instructions. To confirm that all participants did not have diabetes, glycated hemoglobin (HbA1c) levels were measured using (BR2200220, Bio-Rad D-10 Hemoglobin Testing System, Germany) less than 6.5% was used as a cut-off value to confirm non-diabetic status.

Kidney stone samples were analyzed using (Stone Analysis Set, Biolabo, France) to determine the main components of the urinary stones and their type; the analysis was performed according to the manufacturer's instructions.

RNA extraction

For extracting mRNA from whole blood, the QIAamp RNA Blood Mini Kit (QIAGEN, Germany) was used according to the manufacturer's protocol. To determine the purity and concentration of mRNA samples, we evaluated the A260/A280 ratio using the NanoDropTM OneC Microvolume UV-Vis Spectrophotometer (Thermo Scientific), with all samples showing approximately 2.0 of purity.

Quantitative real-time PCR (qRT-PCR)

VDR gene expression was quantified using a one-step RT-qPCR assay on the QuantStudio™ 5 Real-Time PCR System (Thermo Fisher Scientific, USA) with Absolute Quantification.

The reactions were performed using the TaqPath DuraPlex 1-Step RT-qPCR Master Mix (Thermo Fisher Scientific, USA) according to the manufacturer's protocol. Universal primers for cDNA synthesis and specific mRNA VDR gene primers (Forward 5'-TGAAGGCTGCAAAGGTTTCT-3' and Reverse 5'-TAGCTTGGGCCTCAGACTGT-3')

(27) were added. A standard curve was generated using serial dilutions of known *VDR* gene concentrations. The absolute number of *VDR* copies was determined by automatically comparing the Ct values of the samples with the standard curve.

Data analysis

Ct values were automatically converted into absolute copy numbers by the QuantStudioTM 5 Real-Time PCR System using standard curve interpolation.

Statistical analysis, mapping, and graphing were conducted using SPSS (IBM Corp., Armonk, NY, USA) and (GraphPad GraphPad Prism 10.3 Software, Boston. Massachusetts, USA). Data distribution normality was evaluated using the Kolmogorov-Smirnov test. Data that followed a normal distribution were analyzed using parametric tests (Mean, Independent ttests). Nonparametric tests (Median, Mann-Whitney U tests) were used to analyze non-normally distributed data to compare differences between patients and controls.

Result and discussion Study population characteristics and biochemical analysis

The study included 90 participants divided into two groups: 50 kidney stone patients and 40 healthy controls. All patients' stones were confirmed to be (CaOX) kidney stones type. The mean age of the patient group was 35.78 ± 11.28 years, while the control group had a mean age of 38.20 ± 8.95 years (p= 0.173). The male-to-female ratio was 2:3 for both the patients and the controls. The mean HbA1c levels were 5.35 ± 0.737 for the patient group and 5.26 ± 0.66 for the control group (p = 0.520).

Biochemical analysis showed that serum calcium, urea, and creatinine levels were higher in patients than in controls. However, statistical analysis showed non-significant differences between the two groups, while VD3 serum levels were lower in patients (20.66±7.07) than in controls (33.90±10.40) and had a significant

difference (p= 0.0001) between the two groups. It was noted that VD3 deficiency was more prevalence in patients 56% than in controls 7.5%. All are detailed in (Table 1).

Table (1): General characteristics and Biochemical analysis of the studied groups

Characteristic	Patients (n=50)	Controls (n=40)	<i>p-value</i> Sig. (p<0.05)
Age (years)	35.78±11.28	38.20±8.95	p=0.173
Age Group			
19-28	15 (30%)	6 (15%)	=
29-38	18 (36%)	14 (35%)	=
39-48	10 (20%)	15 (37.5%)	=
49-63	7 (14%)	5 (12.5%)	=
Sex (M/F)	2:3	2:3	-
Male	20 (40%)	24 (60%)	-
Female	30 (60%)	16 (40%)	-
Stone Type CaOX	50(100%)	-	-
HbA1c	5.35 ± 0.737	5.26 ± 0.66	p = 0.520
Calcium	9.44 ± 0.530	9.33 ± 0.264	p=0.202
Urea	37.96 (30.47-49.70)	42.25 (40.15-44.35)	p = 0.366
Creatinine	0.99(0.82-1.32)	0.94(0.91-0.98)	p=0.348
VD3 Levels	20.66±7.07	33.90±10.40	P < 0.0001
Deficient VD ₃	28(56%)	3(7.5%)	<i>p</i> < 0.0001
Insufficient VD ₃	16(32%)	15(37.5%)	p = 0.5874
Sufficient VD ₃	6(12%)	22(55%)	<i>p</i> < 0.0001

VDR gene expression results

The absolute number of VDR expression copies ranged from 4.900 to 134.8 copies/ μ L in (CaOX) kidney stone patients, compared to healthy controls, which ranged from 3.500 to 23.70 copies/ μ L. The median absolute expression of VDR in patients was

26.20[11.98–53.03] and 9.400[7.625–11.68] in controls (Figure 2). A Mann-Whitney U test confirmed that VDR expression was significantly higher in patients than in controls (p <0.0001) revealing that VDR expression was upregulated in the patients compared to the controls.

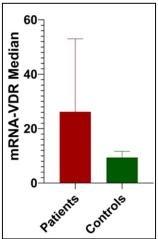


Figure (1): Median of absolute VDR mRNA expression

ROC Curve analysis of *VDR* expression and VD3 levels

A Receiver Operating Characteristic (ROC) curve was used to evaluate the diagnostic potential of *VDR* expression and VD3 Levels. The *VDR* expression curve showed an AUC of 0.858 (P<0.0001), and the VD3 levels curve showed an AUC of 0.857 (P<0.0001),

indicating excellent discrimination in both variables between calcium oxalate kidney stone patients and healthy controls (Figure 3).

These findings suggest that *VDR* expression and VD3 Levels could be a potential biomarker for distinguishing between patient and control groups.

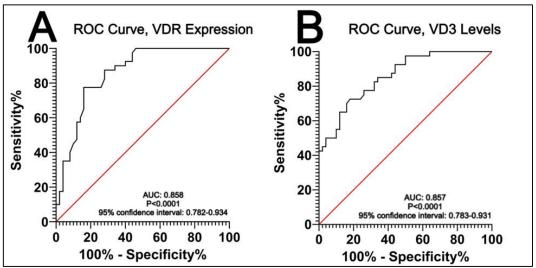


Figure (2): Receiver Operating Characteristic (ROC) curve between the patient group and control group A. For *VDR* expression B. For VD3 levels

VDR and VD play a pivotal role in calcium and oxalate metabolism, and regulating calcium deposition in renal tissues through modulation of renal calcification inhibitory factors activity (28). When imbalanced, it may result in the abnormal deposition of calcium salts in the kidneys, which can induce stone formation. Vitamin D affects the renal acid-base regulatory mechanism, modulating the solubility of calcium and oxalate by altering the pH of the urine. Changes in urinary pH directly impact stone formation (29).

The current study results showed upregulation in VDR expression and significant difference between CaOx kidney stone patients and controls groups (p <0.0001) which consistent with previous studies on rats models of kidnev stone that showed VDRupregulated expression (27,30), the VD3 levels reduced in patients

compered to controls (P < 0.0001), (56%) of the patients group were diagnosed with VD3 deficiency aligning with other studies (31-33) ,suggesting a potential link with Kidney Stone formation.

However, the present study results showed slight non-significant difference in calcium serum levels between patients and controls groups, as the mean calcium level for both groups was found to be within the normal range, consistent with a previous study (34.35). Although the balance calcium blood levels appears to be stable and unaffected by changes in other factors' values, maintaining this balance is the result of multiple regulatory factors and mechanisms. These include VD, VDR, PTH function, renal calcium reabsorption, and urine excretion. These mechanisms strive to maintain this balance, as calcium is one

of the most important minerals in the body; it has an essential role in heart regulating muscles and functioning, nervous transmitting system messages, and playing many other vital roles. Kidney formation may be a consequence of maintaining calcium balance when regulatory factors are disrupted for various reasons.

ROC curve analysis revealed an AUC of 0.858 for *VDR* expression and 0.857 for VD3 levels, indicating an excellent discrimination power of *VDR* expression and VD3 levels as a potential biomarker, and a good target for treatment developing strategies aiming to maintain healthy calcium metabolism and reduce kidney stone formation risk.

Conclusion

Upregulation of *VDR* expression and lower levels of VD3 were observed in CaOx kidney stone patients, suggesting an effect on calcium homeostasis and influencing kidney stone pathology. These variables can be used as biomarkers and in developing target therapy strategies.

Acknowledgements

The authors express their gratitude to the Al Yarmouk Teaching Hospital Urology Department, including the Lithotripsy Unit team, the surgical operation team, and the Laboratory Unit, for their cooperation and assistance in supplying the samples and patient data.

Funding Statement

There is no specific funding received during this study.

Approval

The local ethics council at the University of Baghdad approved this study under the official letter No. 6343 on 29/10/2023.

References

1. Alelign, T. and Petros, B. (2018). Kidney Stone Disease: An Update on Current

- Concepts. Advances in Urology, 2018(1), 3068365.
- 2. Liang, X.; Lai, Y.; Wu, W.; Chen, D. and Zhong, F. (2019). LncRNA-miRNA-mRNA expression variation profile in the urine of calcium oxalate stone patients. *BMC medical genomics*, 12(1), 57.
- Mohammad, B. A.; Ahsan, M.; Bashir, B.; Alshyhi, S.; Groenewald, C. A. and Groenewald, E. S. (2024). IMPACT OF GENETIC FACTORS ON KIDNEY STONE SUSCEPTIBILITY AND TREATMENT. Journal of Population Therapeutics, 31(3), 1738-1747.
- 4. Kirkali, Z.; Rasooly, R.; Star, R. and Rodgers, G. (2015). Urinary Stone Disease: Progress, Status, and Needs. *Urology*, 86(4), 651–653.
- 5. Wang, K.; Ge, J.; Han, W.; Wang, D.; Zhao, Y.; Shen, Y.; et al. (2022). Risk factors for kidney stone disease recurrence: a comprehensive meta analysis. *BMC Urology*, 22(1), 62.
- 6. Alzubaidy, D. A. and Al Obaidy, L. H. (2024). GRHPR gene variations in Iraqi patients infected with calcium oxalate kidney stones. *Baghdad Science Journal*, 21(8), 2531-2550.
- Gao, H.; Zhang, H.; Wang, Y. and Li, K. (2019). Treatment of Complex Renal Calculi by Digital Flexible Ureterorenoscopy Combined with Single-Tract Super-Mini Percutaneous Nephrolithotomy in Prone Position: A Retrospective Cohort Study. Medical science monitor: International medical journal of experimental and clinical research, 25, 5878–5885.
- 8. Zhu, W.; Liu, Y.; Lan, Y. and Li, X. (2019). Dietary vinegar prevents kidney stone recurrence via epigenetic regulations. *EBioMedicine*, 45, 231–250.
- 9. Huang, Y.; Zhang, Y.; Chi, Z.; Huang, R.; Huang, H.; Liu, G.; et al. (2020). The Handling of Oxalate in the Body and the Origin of Oxalate in Calcium Oxalate Stones. *Urologia internationalis*, 104(3-4), 167–176.
- Sholan, R.; Aliyev, R.; Hashimova, U.; Karimov, S. and Bayramov, E. (2024). Urinary Stone Composition Analysis of 1465 Patients: The First Series from Azerbaijan. Archives of Iranian medicine, 27(11), 618-623.
- 11. Nicola, R. and Menias, C. (2018). Urinary Obstruction, Stone Disease, and Infection. In Hodler (Ed.), Diseases of the Abdomen

- and Pelvis 2018-2021. Springer International Publishing.
- 12. Allam, E. A. (2024). Urolithiasis unveiled: pathophysiology, stone dynamics, types, and inhibitory mechanisms: a review. *African Journal of Urology*, 30(34).
- 13. Kadhim, S. J. and Abdul-hassan, I. A. (2017). Correlation between vitamin D receptor gene polymorphisms and levels of some hormones in Iraqi infertile women with polycystic ovary syndrome. *Iraqi Journal of Biotechnology*, 16(4), 104-113.
- Abdulkareem, Z. A.; AL- Tayie, S. R. and Al-awadi, S. J. (2019). The Association of Vitamin D Deficiency and Insufficiency with Genetic Polymorphism (CYP27B1 SNP rs10877012) in Iraqi Samples. *Iraqi Journal of Biotechnology*, 18(2), 126-134.
- Mustafa, A. J.; Balaky, H. M. and Ismail, P. A. (2023). The role of Adipocytokines, Vitamin D, and C in Colorectal Cancer. *Iraqi Journal of Biotechnology*, 20(3), 690-699.
- 16. Thiel, A.; Hermanns, C.; Lauer, A. A.; Reichrath, J.; Erhardt, T.; Hartmann, T.; et al. (2023). Vitamin D and Its Analogues: From Differences in Molecular Mechanisms to Potential Benefits of Adapted Use in the Treatment of Alzheimer's Disease. *Nutrients*, 15(7), 1684.
- 17. Fleet, J. C. (2022). Vitamin D-Mediated Regulation of Intestinal Calcium Absorption. *Nutrients*, 14(16), 3351.
- 18. Zhang, F. and Li, W. (2024). The complex relationship between vitamin D and kidney stones: balance, risks, and prevention strategies. *Frontiers in nutrition*, 11, 11:1435403.
- Martinis, M. D.; Allegra, A.; Sirufo, M. M.; Tonacci, A.; Pioggia, G.; Raggiunti, M.; et al. (2021). Vitamin D Deficiency, Osteoporosis and Effect on Autoimmune Diseases and Hematopoiesis: A Review. International *Journal of Molecular Sciences*, 22(6), 8855.
- Shi, L.; Bao, Y.; Deng, X.; Xu, X. and Hu, J. (2025). Association between calcium and vitamin D supplementation and increased risk of kidney stone formation in patients with osteoporosis in Southwest China: a cross-sectional study. *BMJ Open*, 15, e092901.
- 21. Tavasoli, S. and Taheri, M. (2019). Vitamin D and calcium kidney stones: a review and a proposal. *International urology and nephrology*, 51, 101–111.

- 22. Kadhim, S. J. and Abdul-hassan, I. A. (2018). Effect of some vitamin D receptor gene variants on the frequency of sister chromatid exchange in Iraqi women with polycystic ovary syndrome. *Iraqi Journal of Biotechnology*, 17(1), 19-97.
- Voltan, G.; Cannito, M.; Ferrarese, M.; Ceccato, F. and Camozzi, V. (2023).
 Vitamin D: An Overview of Gene Regulation, Ranging from Metabolism to Genomic Effects. *Genes*, 14(9), 1691.
- 24. Sigüeiro, R.; Bianchetti, L.; Peluso-Iltis, C.; Chalhoub, S.; Dejaegere, A.; Osz, J.; et al. (2022). Advances in vitamin D receptor function and evolution based on the 3D structure of the lamprey ligand binding domain. *Journal of medicinal chemistry*, 65(7), 5821–5829.
- 25. Gasperini, B.; Visconti, V. V.; Ciccacci, C.; Falvino, A.; Gasbarra, E.; Iundusi, R.; et al. (2023). Role of the Vitamin D Receptor (VDR) in the Pathogenesis of Osteoporosis: A Genetic, Epigenetic and Molecular Pilot Study. *Genes*, 14(3), 542.
- Almuktar, A. A.; Al Obaidy, L. H. and Ali, A. M. (2025). The Impact of VDR-FokI Polymorphism in Iraqi Patients with Prostate Cancer and Prostate Benign Hyperplasia. *Baghdad Science Journal*, 22(3), 14.
- 27. Fan, L.; Li, H. and Huo, W. (2022). Inhibitory role of microRNA-484 in kidney stone formation by repressing calcium oxalate crystallization via a VDR/FoxO1 regulator axis. *Urolithiasis*, 50, 665–678.
- 28. Xu, D.; Gao, H.-J.; Lu, C.-Y.; Tian, H.-M. and Yu, X.-J. (2022). Vitamin D inhibits bone loss in mice with thyrotoxicosis by activating the OPG/RANKL and Wnt/β-catenin signaling pathways. *Frontiers in Endocrinology*, 13.
- Shavit, L.; Chen, L.; Ahmed, F.; Ferraro, P. M.; Moochhala, S.; Walsh, S. B.; et al. (2016). Selective screening for distal renal tubular acidosis in recurrent kidney stone formers: initial experience and comparison of the simultaneous furosemide and fludrocortisone test with the short ammonium chloride test. Nephrology Dialysis Transplantation, 31(11), 1870–1876.
- 30. Guo, S.; Chia, W.; Wang, H.; Bushinsky, D. A.; Zhong, B. and Favus, M. J. (2022). Vitamin D receptor (VDR) contributes to the development of hypercalciuria by sensitizing VDR target genes to vitamin D in a genetic hypercalciuric stone-forming

- (GHS) rat model. *Genes & Diseases*, 9(3), 797-806.
- 31. Pipili, C. and Oreopoulos, D. G. (2012). Vitamin D Status in Patients with Recurrent Kidney Stones. *Nephron. Clinical practice*, 122, 134–138.
- 32. Johri, N.; Jaeger, P.; Ferraro, P. M.; Shavit, L.; Nair, D.; Robertson, W. G.; et al. (2017). Vitamin D deficiency is prevalent among idiopathic stone formers, but does correction pose any risk? *Urolithiasis*, 45(6), 535-543.
- 33. Dholakia, K.; Selvaraj, N. and Ragavan, N. (2021). Prevalence of Vitamin D Inadequacy in Urolithiasis Patients. *Cureus*, 13(6), e15379.
- 34. Masser, J. A.-H.; Mousa, M. J.; Makki, H. A.-A.; Al-Khafaji, N. S.; Al-Dahmoshi, H. O. and Mahdi, Z. A.-A. (2021). Calcium and Phosphate Homeostasis in Patients with Recurrent Nephrolithiasis. *Journal of Contemporary Medical Sciences*, 7(6).
- 35. Shen, X.; Chen, Y.; Zhang, Y.; Xia, K.; Chen, Y. and Hao, Z. (2022). The Association of Urine Creatinine With Kidney Stone Prevalence in US Adults: Data From NHANES 2009-2018. Frontiers in medicine, 9, 819738.