

Molecular Detection of *lasB* Gene in Multidrug-Resistant *Pseudomonas aeruginosa* Isolated from Clinical Specimens

¹Laith H. Ali, ²Kamil M. AL-Jobori, ³Wathiq A. Hatite Al-Daraghi

^{1,2,3} Institute of Genetic Engineering and Biotechnology for Postgraduate Studies, University of Baghdad, Baghdad, Iraq

Received: February 20, 2025 / Accepted: May 22, 2025 / Published: November 16, 2025

Abstract: Pseudomonas aeruginosa is an opportunistic pathogen, particularly in immunocompromised individuals. Among its many virulence factors, the lasB gene, which encodes for elastase, plays a crucial role in tissue destruction, particularly in acute lung infections and burn wound infections. The study aimed to explore the prevalence of the lasB virulence gene in multidrug-resistant and extensively drugresistant P. aeruginosa. 300 clinical specimens were collected from various hospitals in Babylon City, Iraq. These isolates were obtained from different clinical sources. Specific and differential media cultured all of these specimens. Phenotypic and biochemical tests identified 46 isolates as P. aeruginosa, which was confirmed by the VITEK-2 system. A molecular diagnosis is recognized by the conventional PCR technique to detect the specified gene amplification products of the lasB gene for P. aeruginosa. The results showed that P. aeruginosa was most prevalent in burn and urine samples, with 46% and 24% rates, respectively. Lower rates were found in wound and sputum samples of 15% and 11%, while the lowest were in ear samples of 4%. Antibiotic resistance was high among the isolates, with 37% being multidrug-resistant (MDR) and 43% extensively drug-resistant (XDR). Only 20% of the isolates were sensitive to antibiotics. The lasB gene was predominantly found in drug-resistant strains, with 52% of XDR isolates, 29% of MDR isolates, and 19% of sensitive isolates carrying the gene. The study found a high prevalence of antibiotic resistance among P. aeruginosa isolates, with a significant proportion being multidrug-resistant and extensively drug-resistant. The presence of the lasB gene in nearly half of the isolates a link between the virulence factor and increased resistance mechanisms.

Keywords: Pseudomonas aeruginosa, lasB gene, MDR, XDR

Corresponding author: (Email: Laith.Ali2300m@ige.uobaghdad.edu.iq)

Introduction

Pseudomonas aeruginosa an important clinical agent, bacterium is an opportunistic pathogen that can cause a wide range of acute and chronic injuries and diseases in humans These bacteria (1).can resist disinfectants and thus play a role in hospital-acquired infections Exacerbating the challenge with P. aeruginosa infections is this organism high intrinsic and acquired resistance to

many current antibiotics (3). Because of this challenge and the severity of infections caused by *P. aeruginosa*, it has been placed among the priority pathogens, known as the ESKAPE, for which new antimicrobial development is urgently needed according to the World Health Organization (WHO) and the Centers for Disease Control (CDC) (4, 5).

Pseudomonas aeruginosa infections are particularly challenging due to their

high level of resistance to antibiotics Antibiotic resistance in P. (6). aeruginosa can be divided into intrinsic and acquired resistance. And adaptive resistance. Given the presence of intrinsic and acquired resistance modes in P. aeruginosa, it is challenging to cure any resulting infections (7). Multidrug-resistant bacteria considered non-susceptible to at least one antimicrobial agent in three or more antimicrobial classes (8). resistance can arise in two main ways. The first is the concentration reduction of antimicrobial compounds in the cell, either by lowering the membrane permeability or actively exporting these compounds by specialized transporters. sequentially The second is by accumulating many genes or mutations that cause resistance to individual antibiotics, which is a very slow process The high prevalence of P. (9).aeruginosa in hospitals, combined with of broad-spectrum overuse antibiotics, has led to a significant surge in drug-resistant P. aeruginosa. As a global problem, the increasing rate of multidrug-resistant Р. aeruginosa (MDR-PA) strains has complicated medical therapy against P. aeruginosa (10). The global incidence of infections due to MDR-PA has been increasing; this includes P. aeruginosa strains carbapenem (CR-PA), resistant to which are particularly difficult to treat (11).

The virulence factors appear on the surface of *P. aeruginosa* or are excreted by it (12). Large quantities of Elastase are produced. It includes *LasB* zinc metalloprotease (elastase), *LasA*metalloendopeptidase, and alkaline protease(13). *LasB P. aeruginosa* releases a wide range of extracellular proteases critical for invasion in acute infections: *LasA* and *LasB* elastases (14). The *T2SS secretes LasB elastases*

under the regulation of QS systems (15) and degrades host elastin (16). It is the abundant protease and principal extracellular virulence factor (14).Italso degrades exogenous flagellin under calcium-replete conditions, avoiding TLR5 recognition (17). Apart from its elastinolytic activity, it also disrupts epithelial tightjunctions (18) and cleaves other host proteins, for instance, surfactant proteins (SP-A and SP-D), cytokines (TNF-, IFN-, IL-6 or IL-2), immunoglobulins and components of inflammasome(14), thereby the interfering with bacterial clearance. This aimed investigate study to prevalence of the *lasB* virulence gene in **MDR** and **XDR**Pseudomonas aeruginosa isolates collected from clinical specimens in Babylon City, Iraq. Furthermore, it aimed to assess the antibiotic resistance profiles of these isolates and to investigate a possible association between the presence of the lasB gene and the mechanisms of antimicrobial resistance.

Materials and Methods Collection of samples

This study included 300 clinical specimens collected from patients of different ages and genders, from various clinical sources, including 99 from burn swabs, 73 from urine samples, 4 from blood, 41 from sputum, 55 from wounds, and 28 from the ear. The specimens were collected using swabs, transported in containers with sterilized transport medium, and transferred to a research laboratory. The clinical specimens were collected from 7 January 2025 to 23 March 2025, from various hospitals in Babylon City, including Al-Hilla Teaching Hospital, Imam Sadiq Teaching Hospital, Imam Ali Hospital, Babylon Hospital for Women and Children, and Murjan

Medical City. The Ministry of Health has granted ethical approval.

Identification of *P. aeruginosa* Isolates

The clinical specimens were immediately inoculated in MacConkey agar, blood agar, and nutrient agar and incubated aerobically overnight at 37°C, followed by subculture on Cetrimide followed by microscopic agar, examination and biochemical identification, and utilized the VITEK 2 system thorough to ensure identification.

Antibiotic susceptibility test

Antibiotic susceptibility testing is once the microorganism is identified. The susceptibility test of P. aeruginosa isolates to antibiotics such as Piperacillin, Cefazolin, Ceftazidime, Cefepime, Imipenem, Meropenem, Amikacin, Gentamicin, Ciprofloxacin, Levofloxacin was examined. Susceptibility antibiotics determined by the Vitek 2 system, automatically measures which turbidity signal for each test well containing an antibiotic, every 15 minutes for up to 18 hours. These data are used to generate growth curves and by comparing with a control, the minimum inhibitory concentration (MIC) of each antibiotic is estimated MIC results $(\mu g/ml)$ (22).into clinical categories translated (Susceptible, Intermediate. resistant) by comparing with breakpoints for susceptibility category determination recommended by the Laboratory Standards Clinical and Instituteguidelines.

Molecular study

Extraction of Genomic DNA

DNA is extracted from examined isolates using a commercial purification system (PrestoTM Mini gDNA Bacteria Kit, Geneaid Biotech Ltd, Taiwan) following the manufacturer instructions;

this kit was designed to isolate DNA from Gram-positive and Gram-negative bacteria. Furthermore, samples were analyzed on a 1% agarose gel to screen for genomic DNA before storing at -20°C for future molecular investigations.

Molecular diagnosis of LasBgene

The virulence gene elastase (lasB) in P. aeruginosa isolates was identified through PCR. The existing study used a couple of primers for the gene. The primer sequences for lasBwere F-5-GGAATGAACGAAGCGTTCTC-3 and R-5-GGTCCAGTAGTAGCGGTTGG-3 with amplification band sizes of 300bp (24), which were supplied by Macrogen Company, Korea, in a lyophilized form.

PCR Components

TransGen Biotech, China, provided the PCR kit used in this study. The PCR reaction mixture consisted of 12.5 µl master mix, 1µl Forward Primer (10 picomole), 1µl Reverse Primer (10 picomole), 8.5µl De-ionized water, and 2µl the DNA (Total volume 25 µl). A QuantusFluorometer was used to detect the concentration of extracted DNA anddetermine the samples' goodness for downstream applications.

PCR Program

Optimization of PCR reaction is accomplished after several trials, thus, the following program for amplifying a fragment of Las B (300) was adopted. initial denaturation was done at 95°C for 3 min, followed by 30 cycles of reaction having the steps denaturation at 95°C for 30 secs, annealing at 58°C for 30 secs, extension at 72°C for 1 min, thenafter, the final extension step was set at 72°C for a 3 min.Detection of the amplified genes was done by horizontal agarose gel electrophoresis. The agarose gel (1.5%) was stained with ethidium bromide and subsequently exposed to UV light. The

optimal product size was confirmed by comparing it with the 100-1500 bp DNA ladder.

Results and Discussion Results

Morphological and cultural characterization tests showed that 46 P. aeruginosa isolates were identified from all the different clinical specimens (300) collected. The results indicate that P. aeruginosa infections are most prevalent in burn patients, accounting for 46% of cases, followed by urine (24%) and wound (15%) samples. Sputum and ear samples show lower percentages (11% and 4%. respectively), while no cases were detected in blood samples. Further investigation into infection sources and prevention strategies is warranted. Pronounced statistics can be observed in Table 1.

Table 1 summarizes the clinical sources of *P. aeruginosa* isolates, highlighting their prevalence across different specimen types. Among 300 clinical specimens, 46 isolates were confirmed as *P. aeruginosa*. Burn swabs constituted the predominant source (46%, n=21), followed by urine

(24%, n=11), wound swabs (15%, n=7), sputum (11%, n=5), and ear samples (4%, n=2). No isolates were detected in blood specimens. The chi-square analysis revealed statistically a association significant between specimen type and P. aeruginosa prevalence (P \leq 0.05). These findings align with prior studies indicating that burns and wounds are high-risk sites for P. aeruginosa colonization due to compromised host defenses prolonged hospitalization. The absence of isolates in blood samples suggests bacteremia caused by this pathogen is the studied population, rare in contrasting with other regions where bloodstream infections are more frequently reported.

The identification of P. aeruginosa isolates is usually based on cultural properties, the presence of characteristic pigments, and growth at 42°C. All the isolates were cultured on MacConkey agar, blood agar, nutrient agar, and Cetrimide agar. All 46 isolates were Gram-negative, rod-shaped, and red-colored under the microscope. All isolates showed the ability to grow at 42 °C.

Table(1): Distribution of Pseudomonas aeruginosa isolates based on the source of isolation.

Clinical Sample	Totalspecimens	Number of p. aeruginosa	Percentage from p. aeruginosa
Burn	99	21	46%
Urine	73	11	24%
Sputum	41	5	11%
Blood	4	0	0%
Wound Swabs	55	7	15%
Ear	28	2	4%
Total	300	46	100%
P-value			0.039 *

Chi-square;* (P≤0.05).

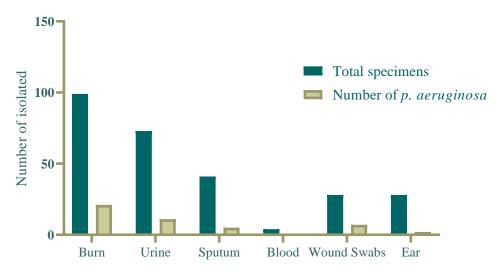


Figure (1):Distribution of Pseudomonas aeruginosa isolates among different clinical specimens.

This investigation showed that P. aeruginosa was highly isolated from burn specimens, which is the place where P. aeruginosa can reach the easiest (21. 46%). With a high prevalence of P. aeruginosa in the community, outcome this was anticipated. It may be linked to the number growing of immunocompromised patients in our population due to various illnesses and environmental contaminations hospitals and the country, particularly among patients who require prolonged hospital stays. This is consistent with research by (23), which discovered that 20 isolates (25%) were recognized as P. aeruginosa based on morphological and culture characterization tests. discovered that P. aeruginosa isolates were present in 71 out of 110 (64.55%) burn patients. The isolation rate of *P*. aeruginosa from wounds was 7 (15%), comparable to the findings of (25), who found that the prevalence of P. aeruginosa in wound samples was 14.5%. The current study's 5 (13.75%) aeruginosa isolation rate from sputum is similar to (26) study, which found that the prevalence of P. aeruginosa in sputum samples was

13.3%, additionally, lung infections like pneumonia are another important clinical manifestation of this pathogen, particularly in patients with cystic fibrosis or chronic obstructive pulmonary disease (COPD), evidenced by the lowest percentages 2 (4%), which were found in the (27) study. Urine samples comprised 11 (23.91%) isolates in the current study. He suggests that P. aeruginosa-caused urinary tract infections (UTIs) are also prevalent. This is especially important given the prevalence of catheterassociated UTIs in hospital settings. Blood samples used in this investigation reveal no isolates. However, another study (27) only found 1 (12.5%), suggesting that P. aeruginosa-caused bacteremia (bloodstream infections) are uncommon in this study. The lowest percentage (4%), compared to 13 (26%) in an Iraqi study (27), indicates that ear infections brought on by this virus are less frequent. The abuse of antibiotics may explain this discrepancy, as well as different hospital infection control strategies, sanitary conditions, and local environment. It may also result from the different sample sizes for these bacterial isolates in the current investigation.

Generally, various factors, such as changes in target site architecture and cell membrane permeability, are responsible for the resistance of various antibiotics (28).

To confirm the diagnosis, the Vitek-2 system also identified a total sample of presumptive P. aeruginosa positive for cultural methods tests. The mentioned tests and Vitek-2 system tests (Table 1) confirmed that 46 isolates out of 300 clinical specimens belonged to P. aeruginosa.

Forty-six isolates of P. aeruginosa tested for their antibiotic susceptibility toward 10 antibiotics using the Vitek-2 system (Table 2). The current study revealed a remarkable increase in P. aeruginosa resistance to the antibiotics used in this study, but especially to beta-lactam antibiotics, represented by penicillins such as piperacillin. Resistance to this antibiotic has reached 83%, with no intermediate and only 17% sensitivity. Cefazolin follows with 74% resistance and 26% sensitivity. Ceftazidime and Cefepime exhibit similar resistance levels of 65% and 61%, respectively, with minor intermediate cases (7% and 6%) and moderate sensitivity (26% and 33%). Carbapenems, Imipenem and Meropenem, show lower resistance and 37%) and higher rates (35% sensitivity (59% and 61%), making them more effective options. Amikacin and Gentamicin, both aminoglycosides, display resistance of 59% and 67%, and sensitivity 28% of and 26%. respectively, with Amikacin having a intermediate rate Fluoroguinolones, Ciprofloxacin and Levofloxacin, show similar resistance patterns (61% and 67%), with low intermediate rates (4% and 2%) and moderate sensitivity (35% and 31%). The highlights significant resistance to commonly used antibiotics like Piperacillin and Cefazolin. while carbapenems (Imipenem and Meropenem) remain relatively effective. Notably, 37% of isolates were classified as extensively drug-resistant (XDR), 36.96% as multidrug-resistant (MDR). Statistical significance (P \leq 0.01) across all antibiotics emphasizes the alarming resistance trends. These results corroborate global reports of rising MDR/XDR P. aeruginosa strains, driven by efflux pump activity. membrane impermeability, and lactamase production.

Table(2): Antimicrobial Susceptibility of Pseudomonas aeruginosa Isolates to Different Antimicrobial Agents.

Antibiotic	Resistant	Intermediate	Sensitive		
Piperacillin	38 (83%)	0 (0.0%)	8 (17%)		
Cefazolin	34 (74%)	0 (0.0%)	12 (26%)		
Ceftazidime	30 (65%) 3 (7%)		13 (28%)		
Cefepime	28 (61%)	3 (6%)	15 (33%)		
Imipenem	16 (35%)	1 (3%)	27 (59%)		
Meropenem	17 (37%)	1 (2%)	28 (61%)		
Amikacin	27 (59%)	6 (13%)	13 (28%)		
Gentamicin	31 (67%)	3 (7%)	12 (26%)		
Ciprofloxacin	28 (61%)	2 (4%)	16 (35%)		
Levofloxacin	31(67%)	1 (2%)	14 (31%)		
P-value	<0.0001 **				

Chi-square; ** $\overline{(P \le 0.01)}$.

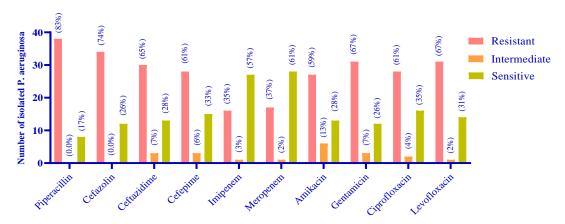


Figure (2): Antibiotic susceptibility pattern of Pseudomonas aeruginosa isolates.

findings concurred research published by (23). According to the current findings, P. aeruginosa shows high levels of resistance to five antibiotics: levofloxacin, cefazolin. ceftazidime, gentamicin, According to piperacillin. (29),the processes restricting intracellular drug concentrations include reduced outer permeability, membrane decreased cytoplasmic membrane absorption, and efflux back across active cytoplasmic membrane. P. aeruginosa intrinsic antibiotic resistance may be caused the production by chromosomally encoded efflux pumps,

which explains these high resistance results (Li and Nikaido, 2004). Antibiotic resistance is generally ascribed to various factors, such as changes in target site architecture and increased cell membrane permeability (28).

The PCR amplification showed that the lasB genes were found in 21 (45.65%) isolates, with amplicons of 300 bp on the agarose gel (Figure 1). Table 3 indicates the presence of the *lasB* gene in 4 (19%) susceptible isolates, 6(29%) MDR isolates, and 11(52%) XDR isolates out of 46 isolates

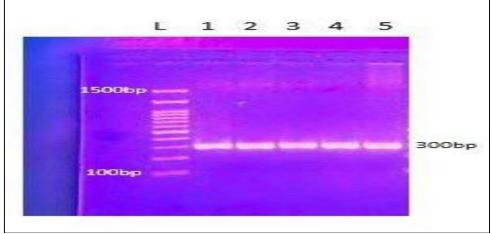


Figure (3): Amplification of the lasBgene. M: 100bp ladder marker. Lanese 300 bp PCR products

Table 3 correlates the presence of the *lasB* virulence gene with resistance phenotypes. The lasB gene was detected in 45.65% (21/46) of isolates, with a

higher prevalence in XDR (55%, n=11) compared to MDR (35.29%, n=6) and susceptible isolates (44.44%, n=4). Chisquare analysis confirmed a significant

association between lasB presence and resistance category (P \leq 0.05). The dominance of lasB in XDR strains (52.38% of total lasB-positive isolates) suggests a potential interplay between virulence and resistance mechanisms. This aligns with hypotheses that hypervirulent strains may co-select for

resistance under antibiotic pressure, enhancing survival in hostile environments. The findings support the need for dual strategies targeting both virulence (e.g., elastase inhibitors) and resistance mechanisms (e.g., efflux pump blockers) to combat recalcitrant P. aeruginosa infections.

Table (3): Frequency of *lasB* gene of *P. aeruginosa* according to the type of resistance.

Type of resistance	S	MDR	XDR	Total	P-value
No. of P. aeruginosa isolate	9	17	20	46	0.03*
lasB gene presence	4	6	11	21	0.03

Chi-square;* (P≤0.05).

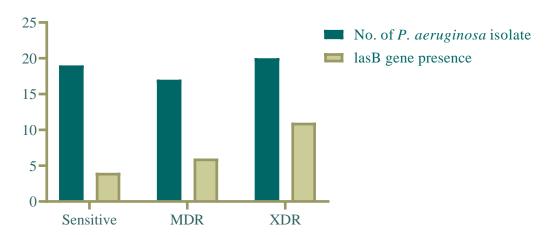


Figure (4): Distribution of lasB gene among Pseudomonas aeruginosa isolates with different resistance profiles.

Based on the results of the current investigation, the *lasB* gene, which has an amplified size of 300 bp, was found in 21 (45.6%) of the 46 isolates of P. aeruginosa (Table 3). This outcome is similar to earlier investigations that used the same primers for the lasB gene and produced a band with an identical molecular weight of 50% (24, 30). Using the same primers for the lasB gene, (31) also produced a band with an identical molecular weight of 82%. Several factors affect the frequency of P. aeruginosa and the percentage of virulence factor genes. including environmental factors. patient immunological health, contamination levels, strain type, and virulence (32).

Numerous extracellular components that promote survival and heightened virulence are also secreted by 35 aeruginosa(33). of the P.aeruginosa strains possessed more than two virulence factors, and the XDR group was more active than the MDR strains, according to (34). Another known factor contributing to aeruginosa multi-drug resistance is biofilm (35). While lasA genes were absent from all strains, lasB genes were present in all strains (36).

In addition, several *LasB* gene variations with varying molecular weights and substrate specificities were found, indicating that *P. aeruginosa* possesses a wide variety of *LasB*

have developed enzymes that to accommodate various hosts and conditions (37). The distribution of *lasB* across resistance types reveals notable trends. Among susceptible (S) isolates, lasB was found in 4 out of 9 isolates(44.44%), while in **MDR** isolates, it was detected in 6 out of 17 (35.29%). In contrast, XDR isolates showed the highest prevalence of lasB, with 11 out of 20 isolates (55%) testing positive. When considering percentage contribution to the total lasB-positive isolates, S, MDR, and XDR accounted for 19.04%, 28.57%, and 52.38%, respectively. This suggests that XDR isolates are more frequently linked to lasB than S and MDR isolates. The results suggest a possible connection between virulence factors and antibiotic resistance. The increased lasB prevalence in XDR isolates might suggest that these strains developed mechanisms defense increase their pathogenicity, perhaps to survive in harsh conditions like high antibiotic pressure. This supports the idea that more resistant bacteria might also have extra virulence factors to help them survive and proliferate.

All 46 clinical isolates of P. aeruginosa tested in this study were classified into groups based on their antibiotic resistance. Table 3 showed several isolates of Multi-Drug Resistance (MDR). MDR is defined as the resistance of a bacterial isolate towards antimicrobial drugs from at least three antipseudomonal classes of the drugs used in this study. In contrast, extensive drug resistance (XDR) means an isolate's resistance to all but one or two courses of antibiotics (38). Of the 46 P. aeruginosa isolates, 17were MDR, 20 were XDR, and 9 were sensitive. 23 were shown to be MDR, substantially linked with older (>65) patients by (34). According to (39) research, P. aeruginosa strains from European nations had a lower rate of MDR occurrence. Public health is seriously threatened by the development and spread of antibiotic resistance in bacterial pathogens (40). The overuse of antibiotics may cause P. aeruginosato develop resistance to many of them. This would result in the development of multidrug-resistant (MDR) aeruginosa and the buildup of antibiotic resistance and cross-resistance (41). Based on the definition of MDR, 17(36.96%) isolates were confirmed as MDR, which agreed with (27).

Conclusion

The study revealed a high prevalence of antibiotic resistance among aeruginosa isolates, with a substantial proportion classified as multidrugresistant and a considerable fraction exhibiting extensively drug-resistant phenotypes. The lasB gene was detected in nearly half of the isolates, with a majority observed in extensively drugresistant strains, suggesting a potential association between the presence of this virulence factor and increased resistance mechanisms. These findings emphasize the critical challenge posed by P. aeruginosa infections, which concurrently demonstrate heightened virulence and resistance profiles, and necessitate comprehensive approaches integrating antimicrobial stewardship, virulence-targeted therapies. infection control measures to address such dual-threat pathogens effectively.

References

- Wood, S. J.; Kuzel, T. M. and Shafikhani, S. H. (2023). Pseudomonas aeruginosa: infections, animal modeling, and therapeutics. Cells, 12(1), 199.
- George, R. and John, J. A. (2023). Phycoerythrin as a potential natural colourant: A mini review. International Journal of Food Science and Technology, 58(2), 513-519.
- 3. Elfadadny, A.; Ragab, R. F.; AlHarbi, M.; Badshah, F.; Ibáñez-Arancibia, E.; Farag,

- A.; Hendawy, A. O.; De los Ríos-Escalante, P. R.; Aboubakr, M. and Zakai, S. A. (2024). Antimicrobial resistance of Pseudomonas aeruginosa: navigating clinical impacts, current resistance trends, and innovations in breaking therapies. Frontiers in Microbiology, 15, 1374466.
- 4. Gildea, L. N. (2022). Exploration of Novel Antibacterial Strategies Against Salmonella Alabama State University].
- Singh, P. and Sillanpää, M. (2022). Degradation of antibiotics and antibioticresistant bacteria from various sources. Academic Press.
- Agustín, M. d. R.; Stengel, P.; Kellermeier, M.; Tücking, K.-S. and Müller, M. (2023). Monitoring growth and removal of Pseudomonas biofilms on cellulose-based fabrics. Microorganisms, 11(4), 892.
- Ullah, A.; Sultan, W.; Mazhar, S.; Shireen, F.; Rabnawaz, M.; Khan, K.; Kamal, M. M.; Hamid, A.; Azam, A. and Umair, M. (2024). Antimicrobial Susceptibility Patterns of Pseudomonas Aeruginosa Isolates in A Tertiary Care Hospital, Peshawar, Pakistan. BioScientific Review, 6(3), 133-140.
- Sweeney, M. T.; Lubbers, B. V.; Schwarz, S. and Watts, J. L. (2018). Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. Journal of Antimicrobial Chemotherapy, 73(6), 1460-1463..
- 9. Gaurav, A.; Bakht, P.; Saini, M.; Pandey, S. and Pathania, R. (2023). Role of bacterial efflux pumps in antibiotic resistance, virulence, and strategies to discover novel efflux pump inhibitors. Microbiology, 169(5), 001333.
- Ratia, C.; Soengas, R. G. and Soto, S. M. (2022). Gold-derived molecules as new antimicrobial agents. Frontiers in Microbiology, 13, 846959.
- 11. Ndikubwimana, I.; Gahamanyi, N.; Bwanakweli, T.; Uwayo, H. D.; Habimana, G. and Rogo, T. (2024). Case Report: Pan-Drug Resistant Pseudomonas aeruginosa from a Child with an Infected Burn Wound at the University Teaching Hospital of Kigali, Rwanda. Infection and Drug Resistance, 4637-4642.
- 12. Kareem, S. M.; Hamza, I. H. and Abed, W. H. (2024). Pathogenicity and virulence genes of Pseudomonas aeruginosa. Reviews and Research in Medical Microbiology, 35(3), 135-143.

- 13. Mahmood, R. M.; Alasadiy, Y. D. K. and Abood, S. J. (2022). **VIRULENCE FACTORS AND ANTIBIOTIC PROFILE** RESISTANT OF **AERUGINOSA PSEUDOMONAS FROM ISOLATED HOSPITAL** ENVIRONMENTAL. British Journal of Sustainable Global **Ecology** and Development, 3.
- 14. Jurado-Martín, I.; Sainz-Mejías, M. and McClean, S. (2021). Pseudomonas aeruginosa: an audacious pathogen with an adaptable arsenal of virulence factors. International journal of molecular sciences, 22(6), 3128.
- 15. Shin, Y.; Li, X.-H.; Lee, C. S. and Lee, J.-H. (2022). Mutational analysis on stable expression and LasB inhibition of LasB propeptide in Pseudomonas aeruginosa. Journal of Microbiology, 60(7), 727-734.
- 16. Tuon, F. F.; Dantas, L. R.; Suss, P. H. and Tasca Ribeiro, V. S. (2022). Pathogenesis of the Pseudomonas aeruginosa biofilm: a review. Pathogens, 11(3), 300.
- 17. Everett, M. J.; Davies, D. T.; Leiris, S.; Sprynski, N.; Llanos, A.; Castandet, J. M.; Lozano, C.; LaRock, C. N.; LaRock, D. L. and Corsica, G. (2023). Chemical optimization of selective Pseudomonas aeruginosa LasB elastase inhibitors and their impact on LasB-mediated activation of IL-1β in cellular and animal infection models. ACS Infectious Diseases, 9(2), 270-282.
- 18. Tang, M.; Liao, S.; Qu, J.; Liu, Y.; Han, S.; Cai, Z.; Fan, Y.; Yang, L.; Li, S. and Li, L. (2022). Evaluating bacterial pathogenesis using a model of human airway organoids infected with Pseudomonas aeruginosa biofilms. Microbiology spectrum, 10(6), e02408-02422.
- 19. Papadimitriou-Olivgeris, M.; Jacot, D. and Guery, B. (2022). How to manage Pseudomonas aeruginosa infections. In Pseudomonas aeruginosa: Biology, Pathogenesis and Control Strategies (pp. 425-445). Cham: Springer International Publishing.
- 20. Shahab, S. N.; van Veen, A.; Kempenaars, N.; Rijfkogel, A.; Schmitt, H.; Saharman, Y. R.; ... & Severin, J. A. (2024). Development of a highly-sensitive method to detect the carriage of carbapenem-resistant Pseudomonas aeruginosa in humans. bioRxiv, 2024-08.
- 21. Reynolds, D. and Kollef, M. (2021). The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa

- infections: an update. Drugs, 81(18), 2117-2131.
- 22. Saegeman, V.; Huynen, P.; Colaert, J.; Melin, P. and Verhaegen, J. (2005). Susceptibility testing of Pseudomonas aeruginosa by the Vitek 2 system: a comparison with Etest results. Acta Clinica Belgica, 60(1), 3-9.
- 23. Al-Saffar, M. F. and Jarallah, E. M. (2019). Isolation and characterization of Pseudomonas aeruginosa from Babylon province. Biochemical & Cellular Archives, 19(1).
- 24. Polse, R. F.; Khalid, H. M. and Mero, W. M. S. (2024). Molecular Identification and Detection of Virulence Genes among Pseudomonas aeruginosa Isolated from Burns Infections. Journal of Contemporary Medical Sciences, 10(1).
- 25. Wolska, K.; Kot, B. and Jakubczak, A. (2012). Phenotypic and genotypic diversity of Pseudomonas aeruginosa strains isolated from hospitals in Siedlee (Poland). Brazilian Journal of Microbiology, 43, 274-282.
- 26. Taee, S. R.; Khansarinejad, B.; Abtahi, H.; Najafimosleh, M. and Ghaznavi-Rad, E. (2014). Detection of algD, oprL and exoA genes by new specific primers as an efficient, rapid and accurate procedure for direct diagnosis of Pseudomonas aeruginosa strains in clinical samples. Jundishapur Journal of Microbiology, 7(10), e13583.
- 27. Alsaadi, L. (2020). Molecular Detection of Multidrug Resistant of Some Genes and the Effect of ZnONPs as Alternative to Antibiotics for Pseudomonas aeruginosa. Doctorate of Philosophy in Biology, College of Education for Pure Science, Department of Biology, University of Diyala.
- 28. Shaikh, S.; Fatima, J.; Shakil, S.; Rizvi, S. M. D. and Kamal, M. A. (2015). Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi journal of biological sciences, 22(1), 90-101.
- 29. Henwood, C.; Livermore, D.; James, D. and Warner, M. (2001). The Pseudomonas Study Group: Antimicrobial susceptibility of Pseudomonas aeruginosa: Results of a UK survey and evaluation of the british society for antimicrobial chemotherapy disc susceptibility test. J Antimicrob Chemother, 47(6), 789-799.
- 30. Shams Eldeen, M. A.; Elsaid, R. E.; Salem, H. S.; Eisa, E. A. and Shalaby, R. E. (2024). LasB, ExoS and Nan1 genes as potential predictors of site-specific Pseudomonas aeruginosa pathogenicity in nosocomial

- isolates. Microbes and Infectious Diseases, 5(2), 770-780.
- 31. Qader, M. K.; Solmaz, H. and Merza, N. S. (2020). Molecular Typing and Virulence Analysis of Pseudomonas Aeruginosa Isolated From Burn Infections Recovered From Duhok and Erbil Hospitals/Iraq. UKH Journal of Science and Engineering, 4(2), 1-10.
- 32. Stover, C. K.; Pham, X. Q.; Erwin, A.; Mizoguchi, S.; Warrener, P.; Hickey, M.; Brinkman, F.; Hufnagle, W.; Kowalik, D. and Lagrou, M. (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406(6799), 959-964.
- 33. Moradali, M. F.; Ghods, S. and Rehm, B. H. (2017). Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Frontiers in Cellular and Infection Microbiology, 7, 39.
- 34. Naik, P.; Pandey, S.; Gagan, S.; Biswas, S. and Joseph, J. (2021). Virulence factors in multidrug (MDR) and Pan-drug resistant (XDR) Pseudomonas aeruginosa: a cross-sectional study of isolates recovered from ocular infections in a high-incidence setting in southern India. Journal of Ophthalmic Inflammation and Infection, 11, 1-11.
- 35. Karami, P.; Khaledi, A.; Mashoof, R. Y.; Yaghoobi, M. H.; Karami, M.; Dastan, D. and Alikhani, M. Y. (2020). The correlation between biofilm formation capability and antibiotic resistance pattern in Pseudomonas aeruginosa. Gene Reports, 18, 100561.
- 36. de Sousa, T.; Hébraud, M.; Alves, O.; Costa, E.; Maltez, L.; Pereira, J. E.; Martins, Â.; Igrejas, G. and Poeta, P. (2023). Study of antimicrobial resistance, biofilm formation, and motility of Pseudomonas aeruginosa derived from urine samples. Microorganisms, 11(5), 1345.
- 37. Gildea, L. N. (2022). Exploration of Novel Antibacterial Strategies Against Salmonella Alabama State University].
- 38. Magiorakos, A.-P.; Srinivasan, A.; Carey, R. B.; Carmeli, Y.; Falagas, M.; Giske, C.; Harbarth, S.; Hindler, J.; Kahlmeter, G. and Olsson-Liljequist, B. (2012). Multidrugresistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical microbiology and infection, 18(3), 268-281.
- 39. Hu, Z.; Zhou, L.; Tao, X.; Li, P.; Zheng, X.; Zhang, W. and Tan, Z. (2024). Antimicrobial resistance survey and wholegenome analysis of nosocomial P.

- Aeruginosa isolated from eastern Province of China in 2016–2021. Annals of Clinical Microbiology and Antimicrobials, 23(1), 12.
- 40. Murray, C. J.; Ikuta, K. S.; Sharara, F.; Swetschinski, L.; Aguilar, G. R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P. and Wool, E. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The lancet, 399(10325), 629-655.
- 41. Bahador, N.; Shoja, S.; Faridi, F.; Dozandeh-Mobarrez, B.; Qeshmi, F. I.; Javadpour, S. and Mokhtary, S. (2019). Molecular detection of virulence factors and biofilm formation in Pseudomonas aeruginosa obtained from different clinical specimens in Bandar Abbas. Iranian journal of microbiology, 11(1), 25.