

Evaluation of Gene Expression of *AQP-1* **Gene in Chronic Myeloid Leukemia of Iraqi Patients**

¹Ababil R. Yhya, ²Mouruj A. Alaubydi

^{1,2} Dept. of Biotechnology/ College of Science/University of Baghdad

Received: February 20, 2025 / Accepted: May 13, 2025 / Published: November 16, 2025

Abstract: Chronic myeloid leukemia is a type of cancer characterized by myeloproliferative disorder in the hemopoietic stem cell (HSC) compartment. It is characterized by the overproduction of myeloid cells which are a type of white blood cell. This study aimed to evaluate the expression levels of the aquaporin-1 (AQPI) gene in Iraqi patients diagnosed with chronic myeloid leukemia. The study was conducted on 40 subjects, aged 8 to 63 years. Blood samples were collected from July/2024 to October/2024 in Baghdad, divided into 20 patients with CML (12 females, 8 males) and 20 healthy controls (12 females, 8 males) attending the Baghdad Private Lab. AQPI genes were assessed using qRT-PCR. AQP-I gene expression revealed that the outcome of the fold value in patients was 28.2 compared to the control 24.1, and the relative expression ($2-\Delta\Delta$ Ct) for the same gene was decreased (downregulation), which was 0.80. These results suggest that reduced expression of the AQPI gene in chronic myeloid leukemia patients could have implications for fluid regulation, kidney function, and disease management. Further studies are needed to clarify the mechanisms underlying decreased AQPI expression in leukemia and its clinical significance

Keywords: Membrane protein, leukemia, *AQP1*, *aqp1* gene, chronic myeloid leukemia. Part of M.Sc. of the 1st author

Corresponding author: (Email: Ababil.yahia2406m@sc.uobaghdad.edu.iq, mourujrabea@gmail.com)

Introduction

Chronic myeloid leukemia is a myeloproliferative disorder the hemopoietic cell (HSC) compartment (1). This disease is characterized by a reciprocal t (9;22) chromosomal translocation, resulting in the formation of the Philadelphia (Ph) chromosome containing the BCR-ABL1 gene (2, 3). AQPs are a family of 12 currently described proteins that act as channels and have been classified into three groups, the first is classical, which acts to allow the passive transport of water; the second aquaglyceroporins, which in addition to water also facilitate the transport of small uncharged solutes, such as

glycerol, ammonia, and urea; and the third was unorthodox, which have been more recently discovered and whose function is not fully understood (4).

Aquaporin-1 (AQP1) is a channelforming integral membrane protein found in all living organisms from bacteria to humans and some viruses **AOPs** mainly facilitate (5).transmembrane diffusion of water and various small solutes are involved in cellular trafficking and many physiological processes. Their primary role is to allow water to flow rapidly into and out of cells, surpassing the relatively slow process of simple diffusion through the lipid bilayer (6).

This protein was the first to be and high-resolution measured. a structure was determined. Studies have identified a clear gating mechanism of action of AQP1 and that alteration of osmotic conditions could induce a reversible protein kinase C (PKC) dependent change in the membrane localization of AQP1, which suggests a regulatory mechanism by trafficking (7) the protein is found in many different tissues in the body, including red blood cells, kidneys, and lungs. Mice and humans lacking AQP1 have been shown to have urinary concentration deficiency during water deprivation (8, 5).

Aquaporins are alike in basic structure, with monomers containing six transmembranes and two short helical segments that enclose cytoplasmic and extracellular vestibules linked by aqueous pores. They have several conserved motifs in their short helical segments as well as NPA sequences (9).

Growing data suggest their possible involvement in cell volume regulating events associated with various nondiseases. Consequently, infectious AQPs have become a potential drug target in clinical medicine (9). In addition to the above expression molecular studies. recent and biochemical studies have alluded to the role of AQPs in human carcinogenesis. AQP1 is shown to play a role both in angiogenesis and cell cycle control, assisting cancer development (10).

There are many studies in Iraq to predictive biomarker for CML progression and development (11,12)respectively.

Little is known about the role of the AQP gene in CML. This study aimed to determine the gene expression of AQP-1 in a sample of Iraqi patients with CML analyzed according to the clinical baseline and laboratory data to find their role in disease severity. This

investigation may clarify the functions of the AQP gene in the CML pathophysiology.

Materials and Methods

This case-control study was conducted between July 2024 and October 2024, to investigate the potential association between AQP-1 gene expressions. Participants were recruited from a private hospital in Baghdad. A total of 40 participants were included in the study, consisting of 20 subject cases with CML, along with 20 healthy controls denoted as Control (CO) for brevity. Also, they were matched as possible. The patient and health were evaluated under supervision of a hematologist. Consent was obtained, and participants provided information about their family medical history, outlining risks and general information.

Sample Collection

Venous blood samples (5mL) were collected from (20) diagnosed CML patients and (20) control subjects after obtaining a comprehensive medical history, their ages ranged from 8-63 years. About 250µl of EDTA-blood was transferred in 500µl of TRIzol mix well and stored at -20C. The blood was used for RNA extraction to detect gene expression of the AQP-1 gene.

Outcome Measurement

Genomic DNA was eliminated using DNase (Promega were total RNA was isolated from sorted cells using TRIzol (Invitrogen) reagent per manufacturer's instructions. The purity and concentration of RNA were Quibt quantified using a (ThermoFisher Scientific/USA). The reverse transcription of RNA (1 µg/sample) was performed using an iScript cDNA **Synthesis** kit (ThermoFisher/USA) per the manufacturer's instructions. **Ouantitative** transcription reverse

polymerase chain reaction (qRT-PCR) was conducted using SYBR Green Real-Time PCR Master Mixes (NEB/UK) and a StepOnePlus Real-Time PCR System (Applied Biosystems, USA). The results were normalized with glyceraldehyde 3-phosphate dehydrogenase (GAPDH)

and fold changes were studied with the formula $2^{-\Delta\Delta CT}$. The primer sequences used for qRT-PCR are recorded as follows (from the 5' end to 3' end): Depending on NCBI, specific oligonucleotide primers were designed by Geneious prime software, Table 1.

Table (1): Primers involved in Real-Time-Quantitative PCR

Primers	Primer Sequence 5`-3`
AOP-1 gene	Forward- CCTGGCTGATGGTGTGAACTC
	Reverse- TGTCCAAGGGCTACAGAGAGG
HAGPD	Forward- TCAAGGCTGAGAACGGGAAGCT
(Housekeeping	Reverse- CTGCAAATGAGCCCCAGCCTT

Statistical Analysis

The data were analyzed using Microsoft Excel and IBM SPSS V26. The results reported in this study were expressed as mean± SD. Independent t-tests were used to test between sexes, and one-way ANOVA was used to test between study groups. Probability values less than 0.05 and 0.01 were considered significant and highly significant differences, respectively.

Results and discussions

Chronic myeloid leukemia disease affects all ages; here, the youngest patient was eight years old, while the oldest was 63. de la Fuente et al., (2014) (13) found that chronic myeloid leukemia in children and young people is a relatively rare form of leukemia that shows increased incidence with age. Some evidence suggests that the molecular basis differs from that in adults.

The randomly collected leukemia group included 20 patients, of whom 27 % were males and 73% were females. The mean age for the patient group was 24.26 years. The control group comprised 20 participants, of whom 73 % were females and 27 % were males, its mean age was 25.71 years.

Based on the findings, the total occurrence of CML was significantly

greater in females than males. results of this study were disagreement with Radivoyevitch et al., (2014) (14)as they proposed that males have an elevated risk developing CML or a shorter latency from initiation to diagnosis of CML. Also, in a series of diagnosed CML patients reported by Rohrbacher and Hasford, (2009)) (15), they found that proportion of Philadelphia (Ph)/BCR-ABL-positive chronic myeloid leukemia (CML), was more frequent in males than in females.

Determination of AQP-1 gene in the blood of groups' specimens

Quantitative RT-PCR was used to determine the expression of AQP-1 gene in different experimental category. SYBER green dye was used in this experiment as an indicator of gene expression that emits green light as an indication of its binding to cDNA. The emission was measured after each qPCR cycle and the amplification results of each cycle were called CT (cycling threshold). The expression of genes was normalized to the scale of housekeeping gene **GAPDH** quantified by the $(\Delta \text{ Ct})$ value and folding $(2^{(-\Delta\Delta Ct)})$.

Table 2 below shows the CT of *AQP1* gene descriptive statistics like

median and Percentiles, the p-value for compassion between studied groups

shows a statistically significant difference < 0.01.

Table (2): Illustrates the descriptive statistics value of AQP-1 gene CT in patient and control.

	Leukemia	Control	P Value
Mean	28.2	24.1	
SD	6.52	5.45	
Median	26.7	22.4	< 0.01
75 % Percentiles	34.5	27.7	
25 % Percentiles	22.2	19.4	

The result in Table 3 shows the lowest level of CT of GAPDH expressed by the control while the

Leukemia patients group showed the highest and were significantly different (P<0.008).

Table (3): The significant difference between CT of GAPDH of Leukemia patients and control

	Leukemia	Control	P value
Mean	23.3	20.8	
SD	5.08	4.62	
Median	20.9	19.2	< 0.008
75 % Percentiles	27.2	23.7	
25 % Percentiles	18.6	16.7	

Table 4 below Illustrates that there are statistically high significant differences between the studied groups < 0.001 and the statistically significant

difference was presented between the levels of the median of Leukemia as well as Leukemia vs. Control.

Table (4): The statistically significant difference between levels of the median of Leukemia and vs. control

	Leukemia	Control	P Value
mean	4.7	3.3	
SD	2.5	1.4	
Median	4.2	3.2	< 0.001
75 % Percentiles	6.8	4.0	
25 % Percentiles	3.0	2.3	

As shown below in table 5. The descriptive statistics of $\Delta\Delta$ Ct of Leukemia patients group

Table (5): Illustrates comparison of ∆∆Ct between control and Leukemia patient

	Leukemia	Control
mean	0.80	N/A
SD	1.15	
Median	0.90	
75 % Percentiles	1.66	
25 % Percentiles	0.07	

The comparison of folding between control and Leukemia subjects showed

a statistically significant difference, Table 6.

Table (6): Illustrates a comparison of folding between control and Leukemia

	Leukemia	Control	P value
Mean	0.85	1	
SD	1.33	0.4	
Median	0.92	1	< 0.001
75 % Percentiles	3	0.7	
25 % Percentiles	0.47	0.2	

Based on the equation of Livak and Schmittgen (2001) (16) the results of the sample were analyzed and the expression fold of the aquaporin gene was determined for each sample. The table above shows that the Δ Ct value was 2.4 after comparing with the corresponding Δ Ct value.

Simultaneously an increase in the relative expression $(2^{-\Delta\Delta})$ of the same gene amounted to 4. The amplification plot and the melting curve for the aqp-1 gene for patients and control subjects using RT-q PCR were positive as shown in figure (1).

And figure (2).

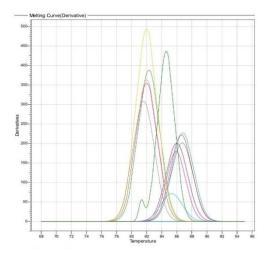


Figure (1): Amplification curves of aqp-1 gene of different subjects of patient groups which was determined by RT-q PCR. Each curve represents separate specimens (patients and control) that were positive and (GAPDH) housekeeping genes.

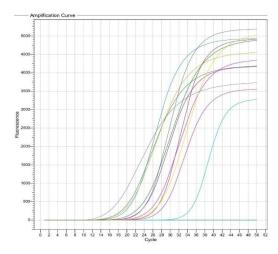


Figure (2): Melt Curves of aqp-1 gene of different subjects of patient groups which was determined by RT-q PCR.

In leukemia, particularly acute myeloid leukemia (AML), altered AQP1 expression may influence the proliferation and survival of leukemic cells. The down-regulation of AQP1 could affect cell migration, invasion, and apoptosis, potentially leading to

more aggressive disease phenotypes as Yin et al., (2020) (17) mentioned.

Accumulating evidence elucidate that the induction of epithelial-mesenchymal transition (EMT) and aberrant expression of microRNAs (miRNAs) are associated with

tumorigenesis, progression, tumor metastasis, and relapse in cancers, including chronic myeloid leukemia (CML) (Xishan et al., 2015) (18). They institute that miR-320a expression was reduced in K562 and CML cancer stem cells. The expression of mesenchymal markers in miR-320a-expressing cells returned to normal levels by the renovation of BCR/ABL expression. Thus, miR-320a acts as a novel tumor suppressor gene in CML and miR-320a decrease migratory, invasive, proliferative, and apoptotic behaviors, as well as CML EMT, by attenuating the expression of BCR/ABL oncogene

Allegra et al., (2022) (19) reported that in several conditions such as cancer tumor progression might be develop by aquaporins in modifying tumor angiogenesis, cell volume adaptation, proteases activity, cell-matrix adhesions, actin cytoskeleton, epithelial-mesenchymal transitions, and acting on several signaling pathways aperient cancer progression. Close connections have also been identified between the aquaporins hematological malignancies. However, it is difficult to recognize a unique action exerted by aquaporins and hemopathies, different each aquaporin has specific action that vary according to the class of aquaporin examined and the different neoplastic cells. However, the expression of aquaporins is altered in cell cultures and patients with acute and chronic myeloid leukemia, lymphoproliferative diseases, and multiple myeloma, and seems to be able to impact the efficacy of treatment and could have prognostic a significance, as greater expression of aquaporins is correlated to progress overall survival in leukemia patients.

On the other hand, Aquaporins (AQPs) have previously been associated with increased expression in solid

tumors. However, their expression in hematologic malignancies, including CML, has not been described yet (20).

Meanwhile, Wei et al., (2015) (21) found the over-expression of aquaporin-1 modify erythroid gene expression in human erythroleukemia K562 cells. AOP1 over-expression effectively inhibited cell proliferation and induced cell growth arrest in the G1 phase of K562 cells. Significant enrichment of genes involved in "oxygen transporter activity" including hemoglobins (HBD. HBG, HBB, HBE1, and HBQ1), HEMGN, and, the silencing of HEMGN by RNA interference in K562-AQP1 cells resulted in the down-regulation of these genes (22). hypothesized that the gene expression is due to hypoxia conditions that can lead to changes in gene expression patterns, including down-regulation of AQP1. Hypoxiainducible factors that are stabilized under low oxygen conditions may not favor the expression of AOP1 leading to reduced levels of this protein (23).

Additionally, Wang and Owler, (24)were researched (2011)determine the expression of AQP1, AQP4 in pediatric brain tumors. Twenty tumor bank specimens were used, the expression of AQP1 and 4, and they found that some brain tumors expressed high levels of AQP1 and 4 but had a more variable pattern of staining. AQP1 and 4 have relevance to pediatric brain tumors and are worthy of further investigation in developing potential therapeutic strategies.

CML is characterized by the Philadelphia chromosome (Ph (25)chromosome) suggested that chromosomal abnormalities can affect gene expression. These alterations may directly impact the regulatory elements controlling transcription, AQP1 resulting in decreased expression. For instance, mutations in transcription factors or epigenetic modifications could silence the AQP1 gene (26) suggested that the suppressing pathways of the BCR-ABL fusion gene would normally maintain AQP1 expression, while the mechanisms behind AQP1 down-regulation in CML are not fully understood.

Conclusion

The current study suggests that the downregulation of the AQP1 gene in myeloid leukemia (CML) patients may play a significant role in the pathophysiology of the disease. Reduced expression of AQP1 could impact cellular water transport and contribute to the altered microenvironment observed in CML. This downregulation may also influence tumor cell proliferation, survival, and response to therapy, highlighting the potential importance of AQP1 as a biomarker or therapeutic target.

Acknowledgment

The author thanks the College of Science, University of Baghdad for supporting the study. Also, she thanks all medical staff, patients, and volunteers for their help during sample collection.

Approval

It was approved by Collage of Science, Biotechnology department for Postgraduate Studies, University of Baghdad, Baghdad, Iraq.

Funding source

The author did not receive any source of funds.

References

- 1. Chereda, B. and Melo, J. V. (2015). Natural course and biology of CML. Annals of Hematology, 94(2), 107–121.
- Osman, A. E. G. and Deininger, M. W. (2021). Chronic myeloid leukemia: Modern therapies, current challenges and future directions. Blood Reviews, 49, 100825.
- Naeem, N. T. and Alsaadi, B. Q. H. (2025). Study the rs2069154005 and rs6928 MAPK1 gene polymorphism in a sample of Iraqi patients with chronic myeloid

- leukemia. Iraqi Journal of Biotechnology, 24(1), 10–21.
- Adeoye, A.; Odugbemi, A. and Tolulope, A. (2022). Structure and function of aquaporins: The membrane water channel proteins. Biointerface Research in Applied Chemistry, 12, 690–705.
- 5. Azad, A. K.; Raihan, T.; Ahmed, J.; Hakim, A.; Emon, T. H. and Chowdhury, P. A. (2021). Human aquaporins: Functional diversity and potential roles in infectious and non-infectious diseases. Frontiers in Genetics, 12.
- Yool, A. J.; Morelle, J.; Cnops, Y.; Verbavatz, J.-M.; Campbell, E. M.; Beckett, E. A. H.; *et al.* (2013). AqF026 is a pharmacologic agonist of the water channel aquaporin-1. Journal of the American Society of Nephrology, 24(7), 1045–1052.
- Tsunoda, S. P.; Wiesner, B.; Lorenz, D, Rosenthal, W. and Pohl, P. (2004). Aquaporin-1, nothing but a water channel. Journal of Biological Chemistry, 279(12), 11364–11367.
- 8. Conner, M. T.; Conner, A. C.; Brown, J. E. and Bill, R. M. (2010). Membrane trafficking of aquaporin-1 is mediated by protein kinase C via microtubules and regulated by tonicity. Biochemistry, 49(5), 821–823.
- 9. Verkman, A. S. (2013). Aquaporins. Current Biology, 23, R52–R55.
- Chae, Y. K.; Kang, S. K.; Kim, M. S.; Woo, J.; Lee, J.; Chang, S.; *et al.* (2008). Human AQP5 plays a role in the progression of chronic myelogenous leukemia (CML). PLOS ONE, 3(7), e2594.
- 11. Al-Amili, W. A.; Ali, N. A. and Al-Faisal, A. H. (2014). Evaluation of oncogene protein p190/BCR-ABL in some Iraqi acute lymphoblastic leukemia patients. Iraqi Journal of Biotechnology, 13(2), 248–252.
- 12. Al-Faisal, A. H. and Alyaqubi, K. J. (2014). Effect of MDR1 gene expression related with C1236T polymorphism in Iraqi acute myeloid leukemia patients. Iraqi Journal of Biotechnology, 13(2), 253–265.
- 13. de la Fuente, J.; Baruchel, A.; Biondi, A.; de Bont, E.; Dresse, M.-F.; Suttorp, M.; *et al.* (2014). Managing children with chronic myeloid leukaemia (CML). British Journal of Haematology, 167(1), 33–47.
- 14. Radivoyevitch, T.; Jankovic, G. M.; Tiu, R. V.; Saunthararajah, Y.; Jackson, R. C.; Hlatky, L. R.; *et al.* (2014). Sex differences in the incidence of chronic myeloid

- leukemia. Radiation and Environmental Biophysics, 53(1), 55–63.
- Rohrbacher, M. and Hasford, J. (2009).
 Epidemiology of chronic myeloid leukaemia (CML).
 Best Practice & Research Clinical Haematology, 22(3), 295–302.
- Livak, K. J. and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) method. Methods, 25(4), 402– 408.
- 17. Yin, X.; Huang, H.; Huang, S.; Xu, A.; Fan, F.; Luo, S.; *et al.* (2020). A novel scoring system for risk assessment of elderly patients with cytogenetically normal acute myeloid leukemia based on expression of three AQP1 DNA methylation-associated genes. Frontiers in Oncology, 10.
- Xishan, Z.; Ziying, L.; Jing, D. and Gang, L. (2015). MicroRNA-320a acts as a tumor suppressor by targeting BCR/ABL oncogene in chronic myeloid leukemia [Retracted]. Scientific Reports, 5(1), 12460.
- 19. Allegra, A.; Cicero, N.; Mirabile, G.; Cancemi, G.; Tonacci, A.; Musolino, C.; *et al.* (2022). Critical role of aquaporins in cancer: Focus on hematological malignancies. Cancers, 14(17).
- 20. Wei, M.; Shi, R.; Zeng, J.; Wang, N.; Zhou, J. and Ma, W. (2015). The over-expression of aquaporin-1 alters erythroid gene expression in human erythroleukemia K562 cells. Tumor Biology, 36(1), 291–302.
- 21. Wang, D. and Owler, B. K. (2011). Expression of AQP1 and AQP4 in paediatric brain tumours. Journal of Clinical Neuroscience, 18(1), 122–127.
- Lee, P.; Chandel, N. S. and Simon, M. C. (2020). Cellular adaptation to hypoxia through hypoxia-inducible factors and beyond. Nature Reviews Molecular Cell Biology, 21(5), 268–283.
- 23. Zhang, J.; Xiong, Y.; Lu, L. X.; Wang, H.; Zhang, Y. F.; Fang, F.; *et al.* (2013). AQP1 expression alterations affect morphology and water transport in Schwann cells and hypoxia-induced up-regulation of AQP1 occurs in a HIF-1α-dependent manner. Neuroscience, 252, 68–79.
- 24. Soliman, D. S.; Amer, A. M.; Mudawi, D.; Al-Sabbagh, Z.; Alkuwari, E.; Al-Sabbagh, A.; et al. (2018). Chronic myeloid leukemia with cryptic Philadelphia translocation and extramedullary B-lymphoid blast phase as an initial presentation. Acta Bio-Medica: Atenei Parmensis, 89(3-Suppl.), 38–44.

25. Machová Poláková, K.; Koblihová, J. and Stopka, T. (2013). Role of epigenetics in chronic myeloid leukemia. Current Hematologic Malignancy Reports, 8(1), 28–36.