

Gene Expression of the MTHFR Gene in a Sample of Diabetic Retinopathy Iraqi Patients

¹Mohammed Adil Jebur, ²Wiaam Ahmed Al-Amili, ³Zeena Adnan Abd

¹Department of Medical Laboratory Techniques, Institute of Medical Technology-Al Mansour, Middle technical University, Baghdad, Iraq

²Institute of Genetic Engineering and Biotechnology for Post Graduated Studies, University ofBaghdad, Baghdad, Iraq

³Department of Surgery, College of Medicine, Al- Nahrain University, Baghdad, Iraq

Received: February 20, 2025 / Accepted: May 20, 2025 / Published: November 16, 2025

Abstract: Diabetic retinopathy (DR)is a condition in which the walls of the small blood vessels of the retina are damaged by diabetic mellitus (DM), which can lead to blindness. Factors including genetic makeup and nutrient regulation in the body may be the causes of this disease. Methylenetetrahydrofolate (MTHFR) plays a key role in cellular processes like regulating homocysteine levels and Oxidative Stress. The present study designed to investigate the association between MTHFR gene expression and DR. This study involved One hundred fifty Iraqi subjects in total, including fifty DR patients, fifty DM patients as positive control, and fifty apparently healthy individuals as negative control. Blood samples were collected from all subjects for RNA extraction according to the Trizol-based method using reverse transcription and RT-PCR assay analysis. The results showed that MTHFR gene expression according to $\Delta \Delta Ct$ compared with the apparently control group. The MTHFR gene expression according to $\Delta \Delta Ct$ confirming these results which showed distinct increase in MTHFR gene expression in DR patients in compared with healthy control (2.16), indicating that this gene is a possible cause of severe vascular diseases such as retinal vascular narrowing, an important component of diabetic retinopathy.

Keywords: Diabetic retinopathy, *MTHFR* gene, folate metabolism, gene expression, metabolic pathways, RT-PCR.

Corresponding author: (E-mail: Mohammed-adil33@mtu.edu.com).

Introduction

Diabetic retinopathy (DR) is a debilitating microvascular complication of diabetes mellitus, affecting millions of individuals worldwide and posing a significant public health burden. It is characterized by progressive damage to the retina's blood vessels, leading to vision impairment and blindness if left untreated. Diabetic retinopathy (DR) is microvascular most common complication of diabetes mellitus. Vascular endothelial growth factor

a major mediator (VEGF) is vascular permeability and angiogenesis and also an important mediator of retinal ischemia-associated intraocular neovascularization (1) Despite advancements in treatment modalities, the pathogenesis of DR remains incompletely understood, with both genetic and environmental playing pivotal roles.(16). The major risk factors for DR development and progression include the duration of

hyperglycemia influences endothelial cell dysfunction, endothelial cell death by apoptosis, and consequent retinal capillary loss seen in diabetic retinopathy.(3)The MTHFR gene is on the short arm of human chromosome 5 at the p15.2–15.3 position, composed of 15 exons and 14 introns.it encodes the methylenetetrahydrofolate reductase enzyme, which plays a crucial role homocysteine regulation. (11) .The Methylenetetrahydrofolate reductase(MTHFR) gene is one of most considered candidategenes the vital role in folate due to its metabolism(9). **MTHFR** Gene Expression essential for is homocysteine metabolism, and its deficiency can lead to elevated homocysteine levels contribute to endothelial dysfunction, which is a risk vascular factor for complications, including diabetic retinopathy, dysregulation of folate metabolism due to reduced MTHFR activity may exacerbate oxidative stress, further damaging retinal cells and contributing the progression of DR.In the pathogenesis of diabetic retinopathy, oxidative stress is increased in the retina and its vasculature, gene transcription associated with oxidative stress are altered, and apoptosis of capillary cells are accelerated .(10). This study was designed to impact the role of MTHFR gene expression in DR development, which can be used as prognostic factors in the future.

diabetes.

Diabetic

Materials and Methods Subjects

In the present study,50 Iraqi patients with DR who were clinically diagnosed at Al-Kadhimiya Medical in Baghdad were included, in addition to healthy apparently individuals negativecontrol group and 50 diabetic patients without retinopathyas

positivecontrol group,who were matched with DR patients in age and sex. All subjects have been informed about the aim of this study and asked to fill in the questionnaire form.

Blood sampling

From each participant, 1 mL venous blood were drawn into an ethylenediaminetetraacetic acid vacutainer tube and diluted with an equal volume of sterile phosphatebuffered saline. Blood sample (250 Ml) was added to 750 Ml of trizolfor RNA the estimation of gene expression. The samples were stored at -20 °C until further processing. The expression levels of MTHFR gene were calculated using the Δ Ct method where the fold change values were determined for the DR patient group compared with the negative control group.

Total RNA extraction

RNA was extracted from blood samples according to the protocol of TRIzolTM Reagent using Biotechnology, Chine, EP013)according manufacturer the instructions. Quantusfluorometer was used to detect the concentration of extracted RNA in order to detect the quality of samples for downstream applications. For 1 µl of RNA, 199 µl of diluted Quantifluor Dye was mixed. After 5min incubation at room temperature, RNA concentration were detected.

cDNA synthesis

A total of 2 µgRNA was used for reverse transcription (RT) with the TransCriptor First-Strand cDNA Synthesis Super mix according to the manufacturer's instructions (Synthol /Russia).

Synthesis of primers

The sequences of genes*MTHFR* were received from NCBI site and the bioinformatic validation of Quantitative Real Time PCR (QRT–PCR) primers were done by the in-silico PCR onlinebuilt-in analysis (https://genome.ucsc.edu/cgi-bin/hgPcr) and delivered to Macrogen Company

(Korea). Primers were designed according to Table 1.

Table (1): Sequences of genesexpression

Primer Name	Forward 5'→3'	Reverse 5'→3'	Tm.
MTHF	GGTGCCACAGGAGATCAAGG	CTCTGTGGTAGCCATCTCGC	60
GAPDH	GAGTCAACGGATTTGGTCGT	TTGATTTTGGAGGGATCTCG	60

Gene expression:

Process of real time PCR to studyMTHFR gene expression was done by The Azure Cielo Real-Time PCR system according to the protocol of Luna® Universal Master Mix Based (Promega, USA). on the protocol, firstly, Master Mix was prepared and added to strip cap microtube and then the cDNA was added to it. The QRT-PCR amplification conditions were: 95°C, 3 min; 95°C, 15sec, 60°C,30 sec for 45 cycles.

cDNA Concentration (ng/µl)

cDNA Concentration 4-6ng/µl

Analysis Gene Expression

Relative quantification

Folding = $2-\Delta\Delta CT$

 Δ CT= CT gene - CT House Keeping

 $\Delta\Delta$ CT= Δ CT Treated or Control – Average Δ CT Average Con.

Results and Discussion

Most studies on *MTHF* in patients with diabetes focus on single-nucleotide

polymorphisms, with very little research on gene expression alteration, particularly in diabetic retinopathy and complications.

The patients exhibited a fold change value equal to 2.45 while the positive control group and negative control group exhibited values 1.30, and 1.00, respectively, showing differing levels of gene expression across the groups. These results were validated with the patient's group 2.16-fold change value using the ΔCt method together ΔCT = CT gene - CT House Keeping gene, with the negative control group. The change value for the positive control group remained at 1.30 while the negative control group stayed at 1.00 value for the negative control group which suggests this gene's putative function in lessening the disease progression and the compounding aggravation of vascular damage (Tables 2, 3, and 4) and Figure 1.

Table (2): Comparison of GAPDH Fold expression between study exposure groups.

	Means Ct of GAPDH	2-Ct	Experiment group / control group	Foldchange of gene expression
Patient	23.53	8.2559E-08	8.2559E-08/8.78733E-08	0.94
Control positive	23.49	8.488E-08	8.488E-08/8.78733E-08	0.97
Control negative	23.44	8.78733E-08	8.78733E-08/8.78733E-08	1

Table (3): Fold of MTHF in expression Depending on ΔCT (normalization Ct values)

	Mean Ct of <i>MTHF</i>	Mean Ct of GAPDH	ΔCT (Means CT of <i>MTHF</i> - Mean CTofGAPDH)	2- ^{ΔCT}	Experiment group / control group	Fold change of gene expression
Patient	27.9	23.53	4.37	0.048	0.048/0.020	2.45
Control positive	28.77	23.49	5.28	0.026	0.026/0.020	1.30
Control negative	29.1	23.44	5.66	0.020	0.020/0.020	1.00

Table (4): Fold of MTHF expression in Depending on $2^{-\Delta\Delta CT}$ method.

	Mean Ct of MTHF	Mean Ct of GAPDH	means ACT Target (CT of MTHF - Ct of GAPDH)	ΔCT Calibrator	ΔΔCT (ΔCT -ΔCT Calibrator)	2-4ACT	Experiment group/contr	Fold change of gene expression
Patient	27.9	23.53	4.37	4.46	-0.09	0.94	0.94/0.44	2.16
Control positive	28.77	23.49	5.28	4.46	0.82	0.57	0.57/0.44	1.30
Control negative	29.1	23.44	5.66	4.46	1.2	0.44	0.44/0.44	1.00

(18) Wang and Liu, 2024 confirmed this hypothesis by suggesting that higher levels of homocysteine, which is implicated as a cause of severe vascular diseases such as retinal vascular narrowing, an important component of diabetic retinopathy.

Various changes in cellular methylation metabolism have been shown to directly result in the imbalance of methionine and homocysteine cycles, which has been widely documented in studies related to diabetes complications (2).

On the other hand, other studies contradict these findings, with (6) that some diabetic patient has inhibition of *MTHFR* (due to epigenetic changes, e.g., hypermethylation) that will affect the production of 5-methyltetrahydrofolate, therefore the rising level of homocysteine.

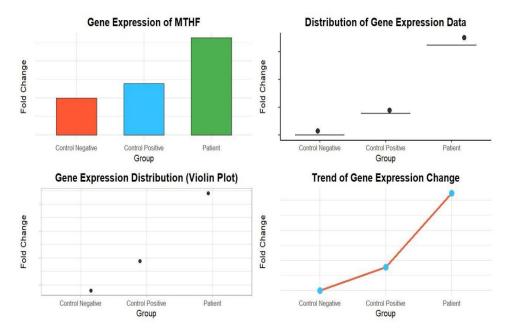


Figure (1):Graphical Representation of MTHFR Gene Expression Among Study Cohorts Using Different Analytical Methods. The above figure illustrates the differences in the expression of the MTHFR gene among the study cohorts by using fold change analysis. The bar chart and trend analysis indicate that the patient group exhibits higher levels of gene expression compared to the two control groups. The distribution plots highlight significant differences in the gene expression values. The noted increase in gene expression lends strength to the implication that MTHFcould play a part in the development of diabetic retinopathy.

Moreover, *MTHFR* gene expression levels in control positive group suggest that their increased expression (1.30-

fold changes) is not a relevant marker for protective effect because it is a physiological response to oxidative stress, which leads to the disease but will not completely avoid the diabetic course.

Previous studies had confirmed this observation that diabetic individuals with stable degrees of physiological methylation were less likely to suffer complications than those undergoing considerable changes in *MTHFR* activity (5).

The variability of changes in findings indicates other factors impacting the regulation of MTHFR, such as genetic and environmental factors (17). There are two factor which the higher levels of MTHFR expression in patients with diabetic retinopathy :(i) the retinal hypoxia, causing the induction of hypoxia-inducible factor (HIF- 1α), a significant modulator of expression in ischemic environments (8) suggested that elevation of HIF-1 α improves *MTHF*R expression as a compensatory response to rely on folate utilization methylation excessive of cell However, despite homeostasis. potential adaptive role of elevated MTHFR expression, this adaptation may be ineffective in controlling ongoing cellular damage, which may exacerbate diabetic retinopathy. Some have suggested studies that overproduction 5of methyltetrahydrofolate may lead to an unbalanced increase in methylation, suppressing the expression of other genes essential for vascular protection, and/or (ii) the high glucose level leads to increased oxidative stress, which triggers cytoprotective methylation mechanisms, such as pathways and the folate cycle, as the leading cause of the increased gene expression of MTHFR observed in diabetic patients with retinopathy (20, 12). MTHFR is an essential enzyme for folate metabolism, and any modification in the *MTHF*R activity results in derangements of homocysteine and methionine levels, ultimately predisposing to more significant oxidative injury to retinal microvasculature (13, 7, 21).

Conclusions:

From the results of the current study , It was concluded that altered MTHFR expression can lead to homocysteine, a risk factor for vascular Hyperhomocysteinemia damage. associated with microvascular dysfunction, contributing to the progression of DR. So, Gene expression of MTHFR plays a role in DR and may serve as a prospective biomarker of this blinding disease in its relatively early stages. Finally, Understanding MTHFR gene expression in DR may help in developing targeted therapies, such as folate supplementation or homocysteine-lowering strategies, to slow disease progression.

References:

- Al-Awadi;S.; B.; Al-Awadi;J.; S.; and Algenabi; A.; A. (2014). Pigment Epithelium Derived Factor and VascularEndothelial Growth Factor in Diabetic Retinopathy. Iraqi Journal of Biotechnology, 2014, Vol.13, No.2, 48-57.
- Cai;C.; Meng; C.; H.e.; S.; G.u.; C.; Lhamo; T. Draga; D. and Qiu; Q. (2022). DNA methylation in diabetic retinopathy: pathogenetic role and potential therapeutic targets. *Cell and Bioscience*, 12(1), 186.
- 3. Campochiaro; P. A.; and Akhlaq; A. (2021). Sustained suppression of VEGF for treatment of retinal/choroidal vascular diseases. *Progress in retinal and eye research*, 83, 100921.
- Cao; W.; Li, N.; Zhang; R.; Li; W.; Gao; M.; Wang; H. and Yu; Z. (2024). Interactive effects of gestational diabetes and high pre-pregnancy body mass index on adverse growth patterns of offspring. Diabetes/Metabolism Research and Reviews, 40(3), e3759.
- Chiu; M. H.; Chang; C. H.; Tantoh; D. M.; Hsu; T. W.; Hsiao; C. H.; Zhong; J. H.;and Liaw; Y. P. (2023). Susceptibility to hypertension based on *MTHFR* rs1801133 single nucleotide polymorphism and

- *MTHF*R promoter methylation. Frontiers in Cardiovascular Medicine, 10, 1159764.
- dos Santos Nunes; M. K.; Silva; A. S.; de Queiroga Evangelista; I. W.; Filho; J. M.; Gomes; C. N. A. P.; do Nascimento; R. A. F.;and Persuhn; D. C. (2017).Hypermethylation in the promoter of the MTHFR gene is associated with diabetic complications and biochemical indicators. Diabetology and metabolic syndrome, 9, 1-9.
- Fakhruddin; S.; Alanazi; W.;and Jackson; K. E. (2017). Diabetes-induced reactive oxygen species: mechanism of their generation and role in renal injury. *Journal* of diabetes research, 2017(1), 8379327.
- 8. Gunton; J. E. (2020). Hypoxia-inducible factors and diabetes. *The Journal of clinical investigation*, 130(10), 5063-5073.
- Hemaya; D.; Abou-Alchamat ;G.;and Aldin; N.; H. (2018). Association of c.1298A>C Variation inMethylenetetrahydrofolate reductase Gene withNeural Tube Defects: Case-Control study in Syrianpopulation. Iraqi Journal of Biotechnology, September 2018, Vol. 17, No. 2, 23-29.
- Moin;M.; Saha; A.; Bakshi; A.; Madhav; M.; and Kirti; P. (2021). Constitutive expression of ribosomal protein L6 modulates salt tolerance in rice transgenic plants. *Gene*, 789, 145670.
- 11. Pei; X.; Yao; X.; Yang; Y.; Zhang; H.; Xia; M.and Huang, R., et al. (2022). Efficacy of artificial intelligence-based screening for diabetic retinopathy in type 2 diabetes mellitus patients. *Diabetes Res. Clin. Pract.* 184, 109190.
- 12. Perła-Kaján; J.; and Jakubowski; H. (2019). Dysregulation of epigenetic mechanisms of gene expression in the pathologies of hyperhomocysteinemia. *International journal of molecular sciences*, 20(13), 3140.
- Sambo; P. M. B. (2014). Folic Acid, One-Carbon Metabolism, MTHFR Polymorphisms and Pathologies (Master's thesis, Egas Moniz School of Health and Science (Portugal)).
- 14. Santos;G.S.P.;Prazeres,P.H.D.M.;Mintz,A. and Birbrair,A. (2018) Role of Pericytes in the Retina. *Eye* (32), 483–486.
- 15. Sarah; A.;A.;and Bushra; J.; M. (2022). The Relationship of Gene Expression between TNFand TNF-Like Cytokine 1A Genes in Sample ofMultiple Sclerosis Iraqi

- Patients . Iraqi Journal of Biotechnology, 2022, Vol. 21, No. 2, 88-95.
- 16. Sienkiewicz-Szłapka; E.; Fiedorowicz; E.; Król-Grzymała, A.; Kordulewska; N.; Cieślińska, Rozmus, D.; A.; Grzybowski, A. (2023). The Role of Genetic Polymorphisms in Diabetic Narrative Retinopathy: Review. International Journal of Molecular Sciences, 24(21), 15865.
- Su; A.; Ling; F.; Vaganay; C.; Sodaro; G.; Benaksas; C.;Dal Bello; R., and Puissant; A. (2020). The folate cycle enzyme MTHFR is a critical regulator of cell response to MYC-targeting therapies. Cancer discovery, 10(12), 1894-1911.
- 18. Wang; Z.;and Liu; H. (2024). Roles of lysine methylation in glucose and lipid metabolism: Functions, regulatory mechanisms, and therapeutic implications. *Biomolecules*, *14*(7), 862.
- 19. Wirta; V.;Saransaari; P.; Wirta; O.; Rantalaiho; V.; O.j.a; S.S.;Pasternack;A.;and Lehtimäki; T. (2002).Methylenetetrahydrofolate polymorphism, reductase gene hyperhomocysteinemia and occlusive retinal vascular disease in type 2 diabetic non-diabetic subjects. Clinical nephrology, 58(3), 171-178.
- 20. Xu; H.; Li; S.;and Liu; Y. S. (2021). Roles and mechanisms of DNA methylation in vascular aging and related diseases. Frontiers in Cell and Developmental Biology, 9, 699374.
- Zarembska; E.; Ślusarczyk; K.;and Wrzosek; M. (2023). The implication of a polymorphism in the methylenetetrahydrofolate reductase gene in homocysteine metabolism and related civilisation diseases. *International Journal of Molecular Sciences*, 25(1), 193.