

The Effect of Citrus reticulata and Rheum rhabarbarum on Gene Expression of fimB and fimE Genes in Escherichia coli Isolates Taken from Iraqi Prostate Patients

¹Wafaa Beed-Allah Hameedi, ²Mohammed Lefta Atala

^{1,2}Biology, College of science, University of Baghdad, Baghdad, Iraq

Received: February 20, 2025 / Accepted: April 22, 2025 / Published: November 16, 2025

Abstract: Citrus reticulata essential oil Rheum rhabarbarum (rhubarb) extract as herbal alternatives to conventional antibiotics in combating multidrug-resistant (MDR) Escherichia coli isolated from patients with benign prostatic hyperplasia (BPH) suffering from urinary tract infections (UTIs). A total of 120 urine samples were collected from male patients (aged 45–87), from which 29 E. coli strains were identified. Among them, six isolates (E1, E3, E9, E14, E16, and E18) showed strong antibiotic resistance and high biofilm-forming ability. C. reticulata oil exhibited strong antibacterial activity, fully inhibiting all six MDR E. coli isolates at 10,000 and 20,000 ppm, while rhubarb extract showed no inhibition. Biofilm production by the most virulent isolates significantly decreased when treated with C. reticulata oil ($P \le 0.01$). Gene expression analysis revealed that citrus oil downregulated fimE (a gene that suppresses fimbriae expression) and upregulated fimB (a gene that activates fimbriae), suggesting a dual role in modulating bacterial adhesion mechanisms. Gas chromatography—mass spectrometry (GC-MS) analysis showed that the main active compound in citrus oil was D-Limonene (76.17%), which is known for its antimicrobial properties. C. reticulata essential oil demonstrates significant potential as a natural antimicrobial and antibiofilm agent against MDR E. coli, offering a promising approach for treating UTIs in patients with BPH, especially in the face of increasing antibiotic resistance.

Keywords: Citrus oil, rhubarb extract, *E. coli*, biofilm formation.

Corresponding author: (Email: light22389@gmail.com)

1. Introduction

Prostate enlargement is also known as benign prostatic hyperplasia (BPH), when tissue around the prostate gland grows larger, it squashes the prostate gland and makes it harder to urinate, This enlargement may also slow down urine flowing out from the bladder, trapping some urine in it, or can cause bladder or kidney damage [1].

Benign prostatic hyperplasia (BPH) can cause urinary retention, increasing the risk of urinary tract infections

(UTIs) in men. Both conditions often coexist in older adults, with each potentially worsening the other. Understanding their interaction is key for effective diagnosis and treatment [2].

A urinary tract infection (UTI) is an infection that affects any part of the urinary tract, including the kidneys, ureters, bladder, and urethra. [3]. UTIs rank as the second most frequent type of infectious disease, with an estimated 150 million cases diagnosed annually

worldwide. Despite antibiotic use in UTI management, the socioeconomic burden associated with recurrent UTIs (rUTIs) is considerable [4].

Uropathogenic *Escherichia coli* (UPEC)-induced UTIs begin at the urethra, where the bacteria adhere to the epithelial cells and colonize the bladder after ascending through the ureters to reach the kidneys [5].

E. coli is a facultative anaerobe and in a wide range can grow temperatures with optimum an temperature of 37°C. E. coli is the most numerous facultative anaerobe presenting in the lower intestinal tract of birds and mammals. E. coli is genetically diverse and includes both commensal strains and pathogenic strains. [6].

According to the increasing of bacterial resistance against antibiotics, essential oils are the positive healthy options to control diseases caused by resistant microbes. these Citrus popularly known reticulata. mandarin, is a subtropical fruit of the family Rutaceae [7]. Chemical composition plays a key role in flavor and aroma, making it an integral part of food and other products. It is important to study the chemical composition to understand the utility of C. reticulata in various applications [8].

Another active medicinal plant is Rheum rhabarbarum, commonly known as rhubarb, is a fascinating plant species, Rheum rhabarbarum contains various bioactive compounds contributing to its functional properties. Phytochemicals found in rhabarbarum include flavonoids, anthraquinones, organic acids, tannins, catechins, and other compounds. These phytochemicals account for the functional properties of rhubarb [9]. Some flavonoids such as quercetin, kaempferol, and their glycosides have

antioxidant, anti-inflammatory, antibacterial, antiviral, and hepatoprotective properties [10]. The aim of this study is to investigate herbal alternatives to antibiotics from the Citrus reticulata essential oil and Rheum rhabarbarum extract in order to control E. coli isolated from UTI. Control type 1 fimbriae expression by fimB and fimE are site-specific recombinases in E. coli that which are essential for adhesion and virulence [11]. They regulate the the *fimS* promoter, inversion of switching fimbrial expression ON or OFF in response to factors like temperature and host signals [12]. Generally fimB promotes the ON phase, while fimE promotes the OFF phase [13]. These genes also interact with broader regulatory networks beyond the fim operon [14]. Their activity is crucial for E. coli pathogenesis in urinary tract and extraintestinal infections [15].

2. Materials and method

2.1 Bacterial collection and isolation

Samples were collected from five hospitals Baghdad during in November-December 2022 and July-September 2023. with ethical approval.A total of 120 bacterial isolates were obtained from the urine of patients have prostates and UTI were age between (45 - 87) years. with benign prostatic hyperplasia (BPH) under sterile, cooled conditions. The isolates were cultured on various agar media and incubated for 18-24 hours at 37 °C under aerobic conditions.All isolates underwent identification tests, including morphological examination and VITEK 2 system [16].

2.2Antibiotic Sensitivity Test by vitik2

Antibiotic susceptibility was tested using the VITEK 2 Compact system from bioMérieux. Pure colonies grown on blood or MacConkey agar were suspended in sterile saline to match a

0.5 McFarland standard. The suspension was loaded into AST cards for Gram-positive or Gram-negative bacteria. Cards were automatically sealed, incubated, and read by the device. Results were reported as Susceptible, Intermediate, or Resistant according to CLSI uidelines.

2.3 Collection and extraction of plants

The plant specimens used in this study consisted of the above-ground portions of peel of Citrus reticulata (Iraqi) and Rheum rhabarbarum roots, which were obtained from a local market in Baghdad. **Following** collection, the plants underwent a thorough cleaning process, including rinsing with tap water, and were subsequently air-dried temperature. They were then stored in pristine conditions until they were ready

In a round-bottomed flask, 100 g of dried sample of C. reticulata with 1 L of D.W was placed, then subordinated to hydro distillation for 2 hours by heating to 60 °C by using the Clevenger apparatus, the aqueous stage was divided into two layers: the under layer included water was neglected, while the toper layer involved the oils gathered, after that stored in a refrigerator in a glass vials were locked and marked until used [17]. The alcoholic extract of rhubarb is prepared using soxhlet apparatus. The root was collected from a local market in Baghdad,50 gm. of Rheum root were extracted with ethanol 250 ml (70%) for seven-hour. The extract was dried and kept [18].

Subsequently, the extracts was stored at a temperature of 4° C until it was ready for utilization. To create the stock solution, the concentrated oil and alcoholic extracts were combined with Dimethyl sulfoxide (DMSO) and diluted. Subsequently, various

concentrations (20000 ppm, 10000 ppm and 5000 ppm) were prepared by mixing specific volumes of the stock solution with specific volumes of DMSO.

2.3.1. Determination of minimal inhibitory concentration of plant extracts (MIC)

The agar dilution method was used to determine the MIC of four plant-based substances against E. coli, following CLSI guidelines. Essential oils and plant extract were dissolved in DMSO, with stock solutions prepared at 500,000 ppm. Dilutions ranging from 20,000 to 5,000 ppm were incorporated into Müller-Hinton agar. Plates were inoculated with *E. coli* and incubated at 37°C for 24 hours. MIC was defined as the lowest concentration showing no visible bacterial growth [19].

2.3.2. Preparation of 1/2 MIC Concentration

To evaluate the sub-inhibitory effects of Citrus reticulata essential oils, and Rheum rhabarbarum extract, a 1/2 MIC concentration was prepared following the agar dilution technique as described by CLSI guidelines (CLSI, M07-A9). After determining the MIC value, the 1/2 MIC was calculated and obtained through serial dilution of a 500,000 ppm stock solution (prepared by dissolving each oil or extract in DMSO). The diluted concentration was incorporated into molten Müller-Hinton agar, poured into sterile Petri dishes, and used in subsequent experiments to assess subinhibitory effects.

2.3.3. Investigate the phytochemical compounds of the active extract using GC-MS technique

The Chemical Analysis Center in Iraq scientific laboratories conducted Gas Chromatography-Mass (GC-MS) analysis on the active extract using a Shimadzu gas chromatograph. The

procedure for this analysis was performed in the same manner.

2.4 Biofilm formation

Detection of biofilm formation phenotypically was done by using the microtiter plate method according to the method described by Hassan et al [21]. Biofilm formation by (29) E. coli isolates was evaluated on 96-well polystyrene plates using LB broth with 1% glucose.Plates were incubated at 37°C for 24 hours, then washed with PBS and fixed with methanol.Wells were stained with 0.1% crystal violet, washed, dried, and destained using 33% glacial acetic acid.Optical density at 600

nm was measured to quantify biofilm, and results were classified based on a cut-off value. Isolates showing strong biofilm formation were chosen for further testing.

2.5 Molecular study

2.5.1 . Extraction of bacterial DNA

The genomic DNA of the twenty *E. coli* isolates that strong biofilm producing was extracted using Kit, as indicated in Table (2-1). The kit's manufacturer protocol was followed (GeneaidTM DNA Extraction Kit, Geneaid Biotech Ltd / Taiwan), wherein DNA was extracted from fresh bacterial cultures.

Table (2-1): The primers used in this study

Table (2 1). The primers used in this study								
Genes	Oligonucleotide	Sequence						
Genes	Primer	(5'→3')						
fimE	Forward	GCAACGGGAGCCAGAGATTA						
	Reverse	CAGTTAGCACGTTCCTGGGT						
fimB	Forward	TCCGGGCGAGTGAAATTTGT						
јіть	Reverse	GGTGCGTTGTTGAAAAGCCT						
GAPDH/HKG	Forward	ACTTACGAGCAGATCAAAGC						
	Reverse	AGTTTCACGAAGTTGTCGTT						

2.5.2. Conventional PCR study A. Primer Preparation

The primers used in this study were designed manually using sequence data obtained from NCBI GenBank and analyzed with appropriate bioinformatics tools. The primers listed in Table 3-4 were received lyophilized and dissolved in nuclease-free water at 100 pmol/µl. A working solution was prepared by diluting 10 µl of primer with 90 µl of nuclease-free water to obtain 10 pmol/µl. Both stock and

working solutions were stored in a freezer until PCR amplification.

B. PCR amplification

PCR reactions were prepared in 20 μ l volumes by mixing PCR premix, 2 μ l of each primer, and 3 μ l of DNA template. Nuclease-free water was added to complete the volume, and a negative control lacking DNA was included. Reactions were run in a thermocycler using the conditions shown in Table (2-2) for amplifying fimB and fimE genes.

Table (2-2): Program used to amplify fimB and fimE genes.

Stage	Temperature	Time	Cycle
Initial denaturation	94	5 min	1
Denaturation	94	30 second	
Annealing	58	30 second	35
Extension	72	30 second	33
Final extension	72	5 min	1

C. Agarose gel electrophoresis

Agarose gel electrophoresis was used to confirm gene presence and PCR specificity following Green and Sambrook [22]. A 1% agarose gel was

prepared in TBE buffer, stained with ethidium bromide, and poured into a casting tray.PCR products mixed with loading dye were loaded alongside a DNA ladder, electrophoresed, and visualized under UV light.

2.5.3 One step quantitative real time PCR assay (qRT-PCR)

A. Reaction setup and thermal cycling protocol

The components of the RT-PCR mixtures are listed in the table below (2-3). The housekeeping gene GAPDH was used as an internal control.

Table (2-3): The components of the RT-PCR mixtures

Component	Volume (µl)	Final concentration
Luna Universal One-Step Reaction Mix (2X)	10	1X
Luna Warm Start ® RT Enzyme Mix (20X)	1	1X
Forward primer (10 pmol/µl)	0.8	0.4 μΜ
Reverse primer (10 pmol/μl)	0.8	0.4 μΜ
Template RNA	variable	20 ng/ul
Nuclease-free water	to 20	

B. Quantitative real time PCR (qRT PCR)

Quantitative real-time PCR was performed as follows:

- 1. All reaction components were thawed at room temperature and then placed on ice. Once fully thawed, each component was briefly mixed by inversion, pipetting, or gentle vortexing.
- 2. All components were added to and combined in a sterile PCR tube, then

thoroughly but gently mixed by pipetting or vortexing.

- 3. The RNA template was added to the qPCR tubes, which were then sealed with flat, optically transparent caps.
- 4. The tubes were briefly spun to remove bubbles (1 minute at 2,500–3,000 x g) and then placed in the thermocycler.
- 5. The thermocycler was programmed and run according to the protocol outlined below table (2-4).

Table (2-4): (qRT-PCR) program used in the study

	(qrei i ore) program asca n	i tiie staaj		
CYCLE STEP	TEMPERATURE (°C)	TIME	CYCLES	
Reverse Transcription	55	10 minutes	1	
Initial Denaturation	95	1 minute	1	
Denaturation	95	10 seconds	40-45	
Extension	60	30 seconds		
Melt Curve	60-95	various	1	

A melting curve was generated with temperatures ranging from 95°C to 60°C, increasing by 0.5°C every 15 seconds.

C. Data analysis of qRT-PCR

Normalization of the data was achieved by referencing the GAPDH housekeeping gene. Subsequently, gene expression levels were quantified as fold changes using the $\Delta\Delta$ CT method described by Livak and Schmittgen [23]. Gene expression levels were calculated using a series of equations based on this methodology. For each sample, including the calibrator and

unknown samples, the difference in threshold cycle values (Δ CT) between the target gene and the reference gene was determined.

 Δ CT = CT target gene – CT reference gene... (1)

The $\Delta\Delta$ CT value was calculated by determining the difference between the Δ CT value of the unknown sample and the Δ CT value of the calibrator sample. $\Delta\Delta$ CT = Δ CT sample – Δ CT Calibrator ... (2)

The normalized amount of the target gene in each sample was adjusted using the formula $2-\Delta\Delta CT$. This adjusted

value was then used to compare and contrast the expression levels across the various samples.

Fold change = $2-\Delta\Delta CT$... (3)

Changes in the relative expression of mRNA levels were assessed using the comparative threshold cycle (CT) value method. This approach involved computing the differences in gene expression levels between the isolates using the $2-\Delta\Delta CT$ formula.

3. Results and Discussion

3.1 Isolation and identification of bacteria

One hundred and twenty of bacterial beginning isolates from the November- December 2022 to July, August-September 2023. **Bacterial** isolates were collected from fife hospitals in Baghdad, in patients have prostates and UTI were age between (45 – 87) years. For primary identification depended isolates was morphological colony (color, shape, size, and texture) appeared on different agar culture media incubated at 37 °C for 24 hr., bacterial isolates were identified initially by conventional procedures bacterial culturing (morphological check on selective and differential cultures media) as ABC

streaking method on culture medium, Vitek 2 system. Common bacterial isolates were *E. coli* (29 isolate).

Generally, the results of studies were somewhat similar to other studies of Atala [24] that reported respectively *S*. *aureus* bacteria was isolated from patients with UTI in Iraqian hospitals with different resistant for antibiotics, and the results appeared use the same identification and Phylogenetic tree between local isolates as reported by Majeed *et al* [25].

3.2 Antibiotic susceptibility test of resistance bacteria

The antimicrobial susceptibility of all isolates was evaluated using VITIK, as detailed by the Clinical and Laboratory Standards Institute [26],for the test. antibiotic susceptibility Each bacterial isolate that was collected participated in the antibiotic susceptibility assay. Presently. identifying effective treatments antibiotic-resistant bacteria presents a considerable challenge. As shown in the results below figure (3-1) and table (3 -1), the E. coli isolates that exhibit the highest levels of multidrug resistance are 1, 3, 9, 14, 16, and 18.

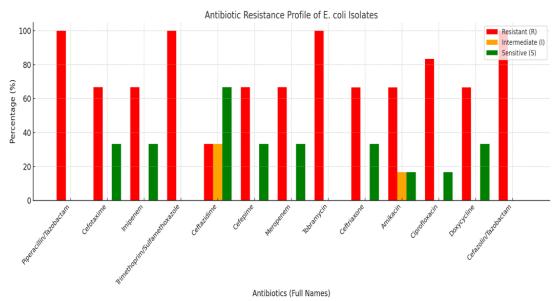


Figure (3-1): Antibiotic resistance profile of E. coli isolates by vitik2

Table (3-1): Inhibition effect of different antibiotics against $E\ coli$ resistant isolates.

E.c	oli													
No		TZ	CT	IP	SX	CA	FE	ME	TO	CR	AM	CI	DO	CZT
		О	X	M	T	Z	P	M	В	О	K	P	X	CZI
	R	+	+		+			+	+		+	+	+	+
1	I					+								
	S			+			+							
	R	+		+	+	+	+	+	+	+		+		+
3	I										+			
	S		+							+			+	
	R	+	+	+	+		+		+	+	+	+		+
9	I							+						
	S					+							+	
	R	+	+	+	+	+	+	+		+	+	+	+	
14	Ι													
	S								+					+
	R	+	+		+			+	+	+	+	+	+	+
16	I					+								
	S			+			+							
	R	+		+	+		+		+			+		+
18	Ι										+			
	S		+			+		+		+			+	
N	R	6	4	4	6	2	4	4	5	4	4	6	3	5
0	I	0	0	0	0	2	0	0	0	0	1	0	0	1
	S	0	2	2	0	2	2	2	1	2	1	0	3	0
%	R I S	100 0 0	66.7 0 33.3	66.7 0 33.3	100 0 0	33.3 3 33.3 3 33.3 3	66. 7 0 33. 3	66.7 0 33.3	83.3 3 0 16.6 7	66. 0 33.3	66.6 7 16.6 7 16.6 7	100 0 0	50.0 0 0 50.0 0	83.3 3 16.6 7 0
P val		0.01 **	0.01 **	0.01 **	0.01 **	1.0 NS	0.0 1 **	0.01 **	0.01 **	0.01 **	0.01 **	0.0 1 **	0.01 **	0.01 **

R= Resistant, I= Intermediate, S= Susceptible

Antibiotic resistance greatly affects public health. Most strains of E. coli are innocuous or beneficial. Nevertheless, some strains of pathogenic E. coli can lead to food and water-borne diseases in humans and animals. The table (4 -2) and figure (3-1), the E. coli isolates that exhibit the highest levels of multidrug resistance are 1, 3, 9, 14, 16, and 18and many pathogenic E. coli strains are multi-drug-resistant against conventional antibiotics, the P-value was ** (P≤0.01),to combat pathogenic drug-resistant bacteria, new bioactive agents need to be developed. Multidrugresistant E. coli isolates complete resistance to ciprofloxacin, TZO, and TMP-SMX, similar to the findings reported by Hassan et al. [27] and Al-Tawfiq et al. [28], indicating widespread **ESBL** and plasmidmediated resistance genes. Resistance to carbapenems (66.7 - 83.3%)statistically significant (P = 0.01), consistent with Wu et al. suggesting carbapenemase-producing strains such as NDM or KPC. High aminoglycoside resistance (66.7%)aligns with the study by Ramirez and Tolmasky [30], which links this to aac(6')-Ib enzymes carried on mobile genetic elements. Biofilm-related resistance mechanisms, as discussed by Guo et al. [31], were evident, with biofilm-embedded cells being 10–1000× more resistant, in agreement with Singh et al. [32].The prioritization of MDR E. coli as a critical threat pathogen by WHO aligns

with Aslam et al. [33], who emphasized the urgent need for new antimicrobial strategies.

3.3 Biofilm formation capacity of bacterial isolates.

The results revealed that were strongest biofilm producers of *E. coli* isolates; and the *P value* was significant $(P \le 0.01)$ in table (3-2).

Table (3-2): Biofilm forming capacity of bacterial isolates.

Isolate no.	Mean OD 600	Biofilm strength	Isolate code	Mean OD 600	Biofilm strength
E1	0.303 Strong		E16	0.404	Strong
E2	0.277	Moderate	E17	0.247	Moderate
E3	0.412	Strong	E18	0.259	Moderate
E4	0.277	Moderate	E19	0.362	Strong
E5	0.260	Moderate	E20	0.257	Moderate
E6	0.244	Moderate	E21	0.372	Strong
E7	0.260	Moderate	E22	0.251	Moderate
E8	0.266	Moderate	E23	0.246	Moderate
E9	0.435	Strong	E24	0.285	Moderate
E10	0.254	Moderate	E25	0.243	Moderate
E11	0.311	Strong	E26	0.296	Moderate
E12	0.332	Strong	E27	0.384	Strong
E13	0.258	Moderate	E28	0.281	Moderate
E14	0.425	Strong	E29	0.251	Moderate
E15	0.264	Moderate	С	0.065	

* E1-E29: E coli isolates 1-29, C: Negative control, Cut off value: 0.0745.

Among the 29 E. coli isolates, 31% were strong biofilm producers, while 69% showed moderate levels, with no weak formers—consistent with Hassan al. [27]. The high OD values in isolates E9, E14, and E3 suggest robust biofilm which production, correlates antibiotic increased resistance, reported by Guo et al. [35]. These findings align with Singh et al. [32], who highlighted biofilm's role in chronic infections and treatment failure. The absence of weak producers may reflect clinical selection pressure favoring biofilm-forming phenotypes, such trends underscore the urgency for biofilm-targeted therapies, including agents that disrupt biofilm architecture., similar to Aslam et al. [34].

3.4 Minimum inhibition concentration (MIC) of essential oil and alcoholic extract against resistant bacteria

MIC test should be carrying out to determine the susceptibility of isolates. The most antibiotic resistant *E. coli* isolates were experienced to determine the minimum inhibitory concentration of both extracts, by utilizing the agar dilution process with serial concentrations of both of them (20000 ppm , 10000 ppm, 5000 ppm and control), Table (3 - 3).

T44	Conc.			E.coli resist	ant isolates				
Treatments	(ppm)	1	3	9	14	16	18		
	20000	-	-	-	ı	-	-		
Citrus oil	10000	-	-	-	ı	=	-		
	5000	+	+	+	+	+	+		
Rheum	20000	+	+	+	+	+	+		
extract	10000	+	+	+	+	+	+		
extract	5000	+	+	+	+	+	+		
	20000	+	+	+	+	+	+		
Control	10000	+	+	+	+	+	+		
	5000	+	+	+	+	+	+		
+ve: N	0.	7	7	7	7	7	7		
-ve No).	5	5	5	5	5	5		
+ve: %		58.33	58.33	58.33	58.33	58.33	58.33		
-ve: %		41.67	41.67	41.67	41.67	41.67	41.67		
P-value		0.049 *	0.049 *	0.049 *	0.049 *	0.049 *	0.049 *		
	* (P<0.05)								

Table (3-3): MIC results of of *C. reticulata* oil and *R. rhabarbarum* extract against the resistant *E. coli* isolates.

The results show that citrus oil at concentrations of 10.000 and 20.000 ppm completely inhibited all six multidrug-resistant E. coli isolates (1, 3, 9, 14, 16, and 18), while at 5,000 ppm it lost efficacy (100% survival). This suggests clear dose-dependent antibacterial effect, which is consistent with findings by Bakkali et al. (33), who demonstrated strong antimicrobial action of citrus essential oils due to compounds like limonene and citral. In contrast, Rheum extract showed no inhibitory activity at any concentration; all isolates remained viable, similar to the untreated control group. This lack of effect contrasts with earlier reports Rheum's on antimicrobial properties, possibly due to strain-specific resistance or bioactive compound concentration [22]. The statistically significant P-value (0.049) across all treatments indicates a meaningful difference in antibacterial activity between citrus oil and Rheum extract. These results support previous work by Nazzaro et al. [36], who

emphasized that plant extracts vary widely in their efficacy depending on concentration. phytochemical composition, and the resistance profile of bacterial strains. Moreover, the complete inhibition by higher citrus concentrations aligns with Tao et al. [37] who noted essential oils could penetrate biofilms and alter membrane permeability in Gram-negative bacteria such as E. coli. The 41.67% inhibition across multiple treatments further emphasizes the potential of essential oils as alternative or adjunct therapies against MDR pathogens [23].

3.5 Measuring the ability of isolates to form biofilms that treatment with oil essential

The essential oils were extracted, determined the active compounds, then the MIC of oils, the synergistic effect of two oils mixture were determined and its effect on the formation of biofilms in the most strongly biofilm-forming isolates (3, 9, 14 and 16) according to result table 3-4.

Treatment	Isolate 3	Isolate 9	Isolate 14	Isolate 16			
Citrus oil	0.0851 ±0.003	0.1648 ± 0.042	0.1053 ± 0.012	0.1317 ±0.025			
Control	0.2726 ± 0.005	0.2713 ± 0.001	0.2639 ± 0.006	0.2844 ± 0.004			
LSD	0.0217 **	0.0861 **	0.0299 **	0.0513 **			
P-value	0.0001	0.0011	0.0002	0.0001			
** (P≤0.01).							

Table (3-4): Measuring the ability of isolates to form biofilms that treatment with mandarin oil.

The results showed that Citrus oil exhibited antibiofilm effect against resistant E. coli, regardless of the temperature. This observation potential applications in food safety, as the combination can be used to eliminate foodborne pathogens without the need for heat treatment. Combining essential oils could be a strategy to overcome bacterial resistance according to Scotti et al.,[38]. To date, using combinations of essential oils maintain the antimicrobial efficacy of active ingredients against resistant E. coli has not been reported as study Iseppi et al., [39]. With the increasing

usage of antibiotics, bacteria have developed resistance mechanisms, and foodborne pathogens have been found to be resistant to antibiotics. Simple heat treatment is often ineffective in eliminating resistant pathogens from foods according to Shi et al., [40].

3.6 Rusht of molecular study 3.6.1 Detection of fim gene in E. coli isolates

A set of primers was used for fim gene detection in isolates of *E. coli* by using the monoplex PCR technique. The result showed that of the (1, 3, 9, 14, 16, 18) *E. coli* isolates (100 %) in Figure (3 - 2).

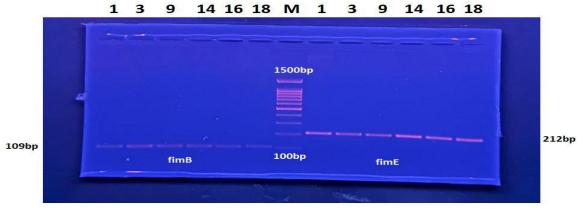


Figure (3-2): Visualization of *E. coli fim* gene by 1.5% agarose gel analysis stained with EtBr. The shown bands are representative of PCR products amplified from *E. coli* isolates, and lane M represents the DNA ladder.

This finding indicates that these isolates are indeed *E. coli*, since the fim gene is typically present in *E. coli* strains. Therefore, detecting this gene in any isolate strongly supports its identification as *E. coli* agree to Abdulla and Abdulrahman [41].

3.6.2. Effect of Citrus oil on fim E gene expression.

Table (3-5) show the study effect of stringent response initiated by control on the expression of *fim E* genes, the RNA was extracted from the established biofilm under normal and oil effect to measure the expression of the genes using qRT-PCR.

Table (3-5): Fold change of fimE gene expression/ Citrus oil

Isolate	Control			(Citrus oil			Fold shower	Result
no.	Hkg	fimE	ΔCt	Hkg	fimE	ΔCt	ΔΔCt	Fold change	Resuit
3	16.77	18.92	2.15	13.32	15.61	2.29	0.14	0.90751916	Decrease
9	16.21	16.07	-0.14	14.02	17.6	3.58	3.72	0.07588718	Decrease
14	16.14	16.57	0.43	14.82	18.59	3.77	3.34	0.09875516	Decrease
16	16.05	17.95	1.9	15.18	17.3	2.12	0.22	0.85856544	Decrease
LSD								0.702 *	
(P-value)								(0.0392)	
				* (P≤0.05).				

Table (3-6) showed the fold change of *fim E* gene expression Citrus oil, extracted from Citrus reculata has an antibacterial effect on *E. coli* and changes its expression of *fimE* gene. However, the mechanism of this gene regulation is still unclear the oil decrease expression of *fimE* gene *.E. coli* is a normal flora of the human body and a common pathogenic bacterium

that causes urinary tract infections (UTIs). UTI is mainly caused by the stimulation of urethra and bladder by the bacterial adhesion and invasion in the mucosa and then the fimbriae on the surface of the bacterial cell bind with the glycoprotein receptor in the host material. *fim-E*, which is one of the fimbriae, plays a major role [24].

Table (3-6): Fold change of *fim-B* gene expression/ citrus oil

Table (3-0): Fold change of <i>Jun-B</i> gene expression/ citrus on										
Isolate no.	Control			(Citrus oil			Fold	Result	
isolate no.	Hkg	fimB	ΔCt	Hkg	fimB	ΔCt	ΔΔCt	change	Kesuit	
3	16.77	23.14	6.37	13.32	15.65	2.33	-4.04	16.449821	Increase	
9	16.21	26.01	9.8	14.02	16.34	2.32	-7.48	178.52719	Increase	
14	16.14	19.98	3.84	14.82	17.05	2.23	-1.61	3.05225184	Increase	
16	16.05	29.14	13.09	15.18	18.56	3.38	-9.71	837.53171	Increase	
LSD								12.942 **		
(P-value)			1					(0.0001)	-	
				** (P	°≤0.01).					

The table (3- 6) show ability of Citrus oil increase gene expression of fimB gene and the P value was significant ** $(P \le 0.01)$ in most isolate contrary to the results of the table (3-6) Where the gene's function is inhibited, this explains why it works on one *fimE* gene and not another. According to our knowledge alone as Nascimento et al., 2023 and Kairey et al., 2023; qburnene and the mixture were the first-time compounds interestingly worth the study. This suggests that the ability of essential oils to repress the most critical genes of UPEC and EAEC was a perception. At all time points, the expression of fimB increased after exposure to Citrus oil. Our report provides important information on better understanding how E. coli is influenced by Citrus oil exposure and at which time point the expression of fimB was significant. This can be applied to developing other novel therapeutic strategies. Further studies are needed to investigate the potential therapeutic application. In conclusion, in the E. coli experimental model, 2% tea tree oil induced the increased expression of the type 1 fimbriae fimB gene in a timedependent manner. Our research suggests that the increased expression of the *fimB* gene in response to tea tree oil may lead to the associated enhanced attachment ability of type 1 fimbriae on epithelial sites of urinary tract-like cells [25]; [26].

3.7 GC-MS results

The effect of Citrus oil related to the antibacterial effect of its active

compounds that analysed using GC-MS analysis. A study of the essential oil compounds of mandarin showed that the oil contains a spectrum of active compounds distributed in the form of 5 peaks in the analysis report, as shown in table (3-7), fig (3-3) below.

T	able (3-7): Co	mpounds	present in t	he oil e	xtract of	Citrus	using (GC-MS	analysis.	

No.	Compound name	Retention time	Percentage %
1	.alphaPinene	6.863	5.03
2	betaMyrcene	8.396	7.90
3	D-Limonene	9.675	76.17
4	gammaTerpinene	10.458	10.23
5	Cyclohexane, 1-ethenyl-1-methyl-2	18.079	0.67

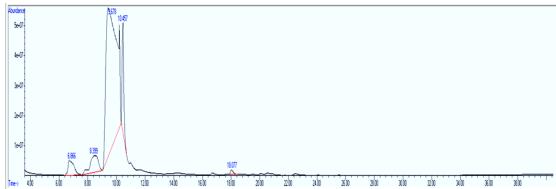


Figure (3-3): GC-MS profile of Citrus oil extract.

As the above results, Citrus oil consist of 5 active compounds, the higher percentage is 76.17% for D-Limonene while the lower percentage is 0.67% for Cyclohexane. A result by Boughendjioua, et al., [42] identified 28 compounds representing a total of 99.41%. The essential oil is constituted mainly of: D-Limonene (85.10%), Sabinene (2.49%), Linalyl (2.00%), Copaene (1.80%) and α -Pinene (1.75%) totalling approximately 93.14%.

In another previous result, the chemical composition of hydrodistilled oils obtained from the leaves of six Citrus reticulata Blanco (mandarin) cultivars grown in Nigeria were examined by GC and GC/MS, the result of their chemical composition was further submitted to cluster analysis. Fifty-seven constituents were

characterized accounting for 88.2-96.7% of the total oils. Sabinene, gterpinene, p-cymene, d-3-carene and (E)- b-ocimene were observed in great variability in all the oils. Other constituents include linalool, myrcene, terpinen-4-ol and cissabinenehydrate. In addition, limonene, terpinolene, βpinene, and α-pinene were detected in appreciable concentrations. β-sinensal α-sinensal isolated and were preparative GC and characterized by oneand two-dimensional **NMR** techniques [27].

Conclusion

Between 120 bacterial isolates from UTI, 29 isolates are *E. coli* isolates. According to the results of AST, six isolates showed the highest bacterial multidrug resistance. The result showed that the Citrus oil had a high efficiency as antibiofilm effect against resistant *E.*

coli isolates with MIC equal to 10000 ppm, while showed no effect to rhubarb extract. The fim gene segment was located in all isolates identified as E. coli using convention testing. Biofilm formation with plant extract decreased significantly when compared to biofilm developed under normal conditions across all isolates. High prevalence of key genes associated with biofilm Ε. formation in coli isolates. Specifically, the fim E and fim B genes. According to the results of GC-MS analysis, the phytochemical screening showed that mandarin oil composed of active compounds. The higher percentage is 76.17% for D-Limonene while the lower percentage is 0.67% for Cyclohexane.

Funding Statement

This study suggestd that the antibacterial and antibiofilm effect was related to D-Limonene active compound.

References

- Lerner, P.; Romanou, A.; Kelley, M.; Romanski, J.; Ruedy, R.; and Russell, G. (2021). Drivers of air-sea CO₂ flux seasonality and its long-term changes in the NASA-GISS model CMIP6 submission. *Journal of Advances in Modeling Earth* Systems, 13(2), e2019MS002028.
- 2. Tolani, M. A.; Suleiman, A.; Awaisu, M.; Abdulaziz, M. M.; Lawal, A. T.; and Bello, A. (2020). Acute urinary tract infection in patients with underlying benign prostatic hyperplasia and prostate cancer. The Pan African Medical Journal, 36, 169.
- 3. Adetola Tolani, M.; Suleiman, A.; Awaisu, M.; Mukhtar Abdulaziz, M.; Tijjani Lawal, A.; and Bello, A.; 2020. Acute urinary tract infection in patients with underlying benign prostatic hyperplasia and prostate cancer.
- Huang, L.; Huang, C.; Yan, Y.; Sun, L.; Li, H.; (2022). Urinary tract infection etiological profiles and antibiotic resistance patterns varied among different age categories: a retrospective study from a tertiary general hospital; Frontiers in microbiology. frontiersin.org
- Josephs-Spaulding, J.; Jensen Krogh, T.; Clara Rettig, H.; Lyng, M.; Chkonia, M.; Waschina, S.; et al. (2021). Recurrent

- Urinary Tract Infections: Unraveling the Complicated Environment of Uncomplicated rUTIs. ncbi.nlm.nih.gov
- 6. Mahmoud, F. A. and Saber, Z. M.; (2022). Detection of bacteriocin Gene of E. coli bacterium isolated of urinary tract infections.
- 7. Shorbagi, M.; Fayek, N. M.; Shao, P. and Farag, M. A.; (2022). Citrus reticulata Blanco (the common mandarin) fruit: An updated review of its bioactive, extraction types, food quality, therapeutic merits, and bio-waste valorization; Food Bioscience.
- 8. Zia, M.; Parveen, S.; Shafiq, N.; Rashid, M.; Farooq, A.; Dauelbait, M., *et al.* (2024). Exploring Citrus sinensis phytochemicals as potential inhibitors for breast cancer genes BRCA1 and BRCA2 using pharmacophore modeling, molecular docking, MD simulations, and DFT analysis. ACS omega, 9(2), pp.2161-2182. acs.org.
- 9. Hamnett, H. (2023). Poisonous Tales: A Forensic Examination of Poisons in Fiction.
- 10. Lee, H. H.; Yu, J. K.; and Moon, Y. S.; 2022. Antioxidant and anti-inflammatory activities of different parts of rhubarb (Rheum rhabarbarum) compared with da huang root (R. officinale). Food Science and Preservation. ekosfop.or.kr
- 11. Sora, V.M.; Bucur, F.I.; and Herman, V. (2021). Virulence factors of Escherichia coli strains isolated from extraintestinal infections. Veterinary Sciences, 8(2), 25.
- 12. Stærk, K.; Chihai, O. and Klemm, P. (2021). Phase variation of fimbrial genes and its role in extraintestinal pathogenic E. coli. Microorganisms, 9(1), 31.
- 13. Xu, Y.; Jørgensen, R.L.; and Hasman, H. (2021). Mechanisms of type 1 fimbriae expression and regulation in E. coli pathotypes. International Journal of Medical Microbiology, 311(1), 151486.
- 14. Klemm, P. and Krogfelt, K.A. (2020). Fimbriae of Escherichia coli: structure, function, and regulation. FEMS Microbiology Reviews, 44(3), 323–350.
- 15. Le, N.H.; Hoang, Q.T.; and Nguyen, M.T. (2022). Characterization of fimB and fimE gene expression in clinical E. coli isolates. BMC Microbiology, 22, 101.
- 16. Forbes, B.A.; Sahm, D.F. and Weissfeld, A.S. (2007). Bailey and Scotts diagnostic microbiology. 12th ed. Philadelphia. Mosby Elisevier Company, Texas. P. USA.
- 17. Khalaf A. N.; Abed I. J. (2021). Evaluating the in vitro Cytotoxicity of Thymus vulgaris Essential Oil on MCF-7 and HeLa Cancer

- Cell Line. Iraqi Journal of Science, 62(9), pp. 2862–2871
- 18. Qin, Y.; Wang, J. B.; Kong, W. J.; Zhao, Y. L.; Yang, H. Y.; Dai, C. M., et al. (2011). The diarrhoeogenic and antidiarrhoeal bidirectional effects of rhubarb and its potential mechanism. Journal of ethnopharmacology, 133(3), 1096-1102.
- 19. Abdulameer H. H.; Abdulhassan G. A. (2021). Iraqi Journal of Science; Vol. 62, No. 10, pp: 3457-3466.
- 20. Abd-alkadhem N. D.; Mohammed R. K. (2022). Determination of Active Phytochemical Compounds of Alhagi Maurorumusing Gas Chromatography-Mass Spectroscopy (GC-MS). Iraqi Journal of Science; Vol. 63, No. 1, pp: 87-97.
- 21. Hassan A.; Usman J.; Kaleem F.; Omair M.; Khalid A.; Iqbal M. (2011). Evaluation of different detection methods of biofilm formation in the clinical isolates, Brazilian journal of infectious diseases, vol. 15, pp. 305-311.
- 22. Green, M. R. and Sambrook, J. (2019). Agarose gel electrophoresis. *Cold Spring* Harbor Protocols, 2019(1), pdb-prot100404.
- 23. Livak, K.J. and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(Delta Delta C(T)) Method. Methods; 25(4):402-8.
- Atala, M. L. (2021). Bacteriological and Molecular study on S. aureus bacteria. Research J. Pharm. and Tech. 14(3):1380-1384.
- 25. Majeed, A. A.; Atala. M. L. and Mohammed, W. J. (2021). Exploration of a new Fluoride resistance gene (FRAM gene) in oral. Research J. Pharm. and Tech. 14(2): 1-7.
- 26. CLSI. (2012). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—9th ed. CLSI document M07-A9.
- 27. Hassan, M.A.; Abd El-Aziz, S.; Elbadry, H.M.; Samy, A. and Tamer, T.M.; 2022. Prevalence, antimicrobial resistance profile, and characterization of multi-drug resistant bacteria from various infected wounds in North Egypt. Saudi Journal of Biological Sciences, 29(4), pp.2978-2988.
- 28. Al-Tawfiq, J. A. et al. (2023). E. coli resistance to sulfonamides. J. Glob. Antimicrob. Resist.; 32, 125–132.
- 29. Wu, W. et al. (2024). Carbapenem resistance in Enterobacteriaceae. Clin. Infect. Dis.; 78(3), 556–564.

- 30. Ramirez, M. S. and Tolmasky, M. E. (2022). Aminoglycoside modifying enzymes. Drug Resist. Updates, 62, 100826.
- 31. Guo, H.; Tong, Y.; Cheng, J.; Abbas, Z.; Li, Z.; Wang, J.; Zhou, Y.; Si, D. and Zhang, R. (2022). Biofilm and small colony variants—an update on Staphylococcus aureus strategies toward drug resistance. International journal of molecular sciences, 23, 1241.
- 32. Singh, R. et al. (2022). Biofilm resistance in Gram-negative bacteria. Pathogens, 11(4), 389
- 33. Shi, R.; Lv, R.; Dong, Z.; Cao, Q.; Wu, R.; Liu, S., *et al.* (2023). Magnetically-targetable outer-membrane vesicles for sonodynamic eradication of antibiotic-tolerant bacteria in bacterial meningitis. Biomaterials, 302, p.122320.
- 34. Aslam, B.; Wang, W.; Arshad, M. I.; *et al.* (2021). Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance, 14, 1645–1658.
- 35. Guo, X. et al. (2023). Biofilm-related antibiotic resistance in E. coli UTIs. Front. Cell. Infect. Microbiol.; 13, 1102349.
- 36. Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; and De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), 1451–1474.
- 37. Tao, N.; Jia, L.; and Zhou, H. (2014). Antibiofilm activity and mechanism of lemon essential oil against E. coli. Food Control, 40, 68–73.
- 38. Scotti, R.; Casciaro, B.; Stringaro, A.; Maggi, F.; Colone, M.; and Gabbianelli, R.; (2024). Fighting Microbial Infections from Escherichia coli O157:H7: The Combined Use of Three Essential Oils of the Cymbopogon Genus and a Derivative of Esculentin-1a Peptide. ncbi.nlm.nih.gov
- 39. Iseppi, R.; Mariani, M.; Benvenuti, S.; Truzzi, E.; Messi, P. (2023). Effects of Melaleuca alternifolia Chell (Tea Tree) and Eucalyptus globulus Labill. Essential Oils on Antibiotic-Resistant Bacterial Biofilms. ncbi.nlm.nih.gov
- 40. Shi, R.; Lv, R.; Dong, Z.; Cao, Q.; Wu, R.; Liu, S., *et al.* (2023). Magnetically-targetable outer-membrane vesicles for sonodynamic eradication of antibiotic-tolerant bacteria in bacterial meningitis. Biomaterials, 302, p.122320. sciencedirect.com
- Abdulla, H. M. and Abdulrahman, M. M. (2023). Detection of the hlyA, fimH, PgaD gene in Escherichia coli isolated from different sources in Kirkuk city. Journal of

- Survey in Fisheries Sciences, 10(1S), 1045–1054.
- 42. Boughendjioua H.; Mezedjeri N. H.; Idjouadiene I. (2020). Chemical constituents of Algerian mandarin (Citrus reticulata) essential oil by GC-MS and FT-IR analysis. Current Issues in Pharmacy and Medical Sciences; Vol. 33, No. 4, Pages 197-201.